2021-09-19 14:55:07 +02:00
using System ;
using System.Collections.Generic ;
using System.Linq ;
namespace Ryujinx.Common.Collections
{
/// <summary>
/// An Augmented Interval Tree based off of the "TreeDictionary"'s Red-Black Tree. Allows fast overlap checking of ranges.
/// </summary>
/// <typeparam name="K">Key</typeparam>
/// <typeparam name="V">Value</typeparam>
public class IntervalTree < K , V > where K : IComparable < K >
{
private const int ArrayGrowthSize = 32 ;
private const bool Black = true ;
private const bool Red = false ;
private IntervalTreeNode < K , V > _root = null ;
private int _count = 0 ;
public int Count = > _count ;
public IntervalTree ( ) { }
#region Public Methods
/// <summary>
/// Gets the values of the interval whose key is <paramref name="key"/>.
/// </summary>
/// <param name="key">Key of the node value to get</param>
/// <param name="overlaps">Overlaps array to place results in</param>
/// <returns>Number of values found</returns>
/// <exception cref="ArgumentNullException"><paramref name="key"/> is null</exception>
public int Get ( K key , ref V [ ] overlaps )
{
if ( key = = null )
{
throw new ArgumentNullException ( nameof ( key ) ) ;
}
IntervalTreeNode < K , V > node = GetNode ( key ) ;
if ( node = = null )
{
return 0 ;
}
if ( node . Values . Count > overlaps . Length )
{
Array . Resize ( ref overlaps , node . Values . Count ) ;
}
int overlapsCount = 0 ;
foreach ( RangeNode < K , V > value in node . Values )
{
overlaps [ overlapsCount + + ] = value . Value ;
}
return overlapsCount ;
}
/// <summary>
/// Returns the values of the intervals whose start and end keys overlap the given range.
/// </summary>
/// <param name="start">Start of the range</param>
/// <param name="end">End of the range</param>
/// <param name="overlaps">Overlaps array to place results in</param>
/// <param name="overlapCount">Index to start writing results into the array. Defaults to 0</param>
/// <returns>Number of values found</returns>
/// <exception cref="ArgumentNullException"><paramref name="start"/> or <paramref name="end"/> is null</exception>
public int Get ( K start , K end , ref V [ ] overlaps , int overlapCount = 0 )
{
if ( start = = null )
{
throw new ArgumentNullException ( nameof ( start ) ) ;
}
if ( end = = null )
{
throw new ArgumentNullException ( nameof ( end ) ) ;
}
GetValues ( _root , start , end , ref overlaps , ref overlapCount ) ;
return overlapCount ;
}
/// <summary>
/// Adds a new interval into the tree whose start is <paramref name="start"/>, end is <paramref name="end"/> and value is <paramref name="value"/>.
/// </summary>
/// <param name="start">Start of the range to add</param>
/// <param name="end">End of the range to insert</param>
/// <param name="value">Value to add</param>
/// <exception cref="ArgumentNullException"><paramref name="start"/>, <paramref name="end"/> or <paramref name="value"/> are null</exception>
public void Add ( K start , K end , V value )
{
if ( start = = null )
{
throw new ArgumentNullException ( nameof ( start ) ) ;
}
if ( end = = null )
{
throw new ArgumentNullException ( nameof ( end ) ) ;
}
if ( value = = null )
{
throw new ArgumentNullException ( nameof ( value ) ) ;
}
Insert ( start , end , value ) ;
}
/// <summary>
/// Removes the given <paramref name="value"/> from the tree, searching for it with <paramref name="key"/>.
/// </summary>
/// <param name="key">Key of the node to remove</param>
/// <param name="value">Value to remove</param>
/// <exception cref="ArgumentNullException"><paramref name="key"/> is null</exception>
/// <returns>Number of deleted values</returns>
public int Remove ( K key , V value )
{
if ( key = = null )
{
throw new ArgumentNullException ( nameof ( key ) ) ;
}
int removed = Delete ( key , value ) ;
_count - = removed ;
return removed ;
}
/// <summary>
/// Adds all the nodes in the dictionary into <paramref name="list"/>.
/// </summary>
/// <returns>A list of all RangeNodes sorted by Key Order</returns>
public List < RangeNode < K , V > > AsList ( )
{
List < RangeNode < K , V > > list = new List < RangeNode < K , V > > ( ) ;
AddToList ( _root , list ) ;
return list ;
}
#endregion
#region Private Methods ( BST )
/// <summary>
/// Adds all RangeNodes that are children of or contained within <paramref name="node"/> into <paramref name="list"/>, in Key Order.
/// </summary>
/// <param name="node">The node to search for RangeNodes within</param>
/// <param name="list">The list to add RangeNodes to</param>
private void AddToList ( IntervalTreeNode < K , V > node , List < RangeNode < K , V > > list )
{
if ( node = = null )
{
return ;
}
AddToList ( node . Left , list ) ;
list . AddRange ( node . Values ) ;
AddToList ( node . Right , list ) ;
}
/// <summary>
/// Retrieve the node reference whose key is <paramref name="key"/>, or null if no such node exists.
/// </summary>
/// <param name="key">Key of the node to get</param>
/// <returns>Node reference in the tree</returns>
/// <exception cref="ArgumentNullException"><paramref name="key"/> is null</exception>
private IntervalTreeNode < K , V > GetNode ( K key )
{
if ( key = = null )
{
throw new ArgumentNullException ( nameof ( key ) ) ;
}
IntervalTreeNode < K , V > node = _root ;
while ( node ! = null )
{
int cmp = key . CompareTo ( node . Start ) ;
if ( cmp < 0 )
{
node = node . Left ;
}
else if ( cmp > 0 )
{
node = node . Right ;
}
else
{
return node ;
}
}
return null ;
}
/// <summary>
/// Retrieve all values that overlap the given start and end keys.
/// </summary>
/// <param name="start">Start of the range</param>
/// <param name="end">End of the range</param>
/// <param name="overlaps">Overlaps array to place results in</param>
/// <param name="overlapCount">Overlaps count to update</param>
private void GetValues ( IntervalTreeNode < K , V > node , K start , K end , ref V [ ] overlaps , ref int overlapCount )
2022-05-03 01:30:02 +02:00
{
2021-09-19 14:55:07 +02:00
if ( node = = null | | start . CompareTo ( node . Max ) > = 0 )
{
return ;
}
GetValues ( node . Left , start , end , ref overlaps , ref overlapCount ) ;
bool endsOnRight = end . CompareTo ( node . Start ) > 0 ;
if ( endsOnRight )
{
if ( start . CompareTo ( node . End ) < 0 )
{
// Contains this node. Add overlaps to list.
foreach ( RangeNode < K , V > overlap in node . Values )
{
if ( start . CompareTo ( overlap . End ) < 0 )
{
if ( overlaps . Length > = overlapCount )
{
Array . Resize ( ref overlaps , overlapCount + ArrayGrowthSize ) ;
}
overlaps [ overlapCount + + ] = overlap . Value ;
}
}
}
GetValues ( node . Right , start , end , ref overlaps , ref overlapCount ) ;
}
}
/// <summary>
/// Inserts a new node into the tree with a given <paramref name="start"/>, <paramref name="end"/> and <paramref name="value"/>.
/// </summary>
/// <param name="start">Start of the range to insert</param>
/// <param name="end">End of the range to insert</param>
/// <param name="value">Value to insert</param>
private void Insert ( K start , K end , V value )
{
IntervalTreeNode < K , V > newNode = BSTInsert ( start , end , value ) ;
RestoreBalanceAfterInsertion ( newNode ) ;
}
/// <summary>
/// Propagate an increase in max value starting at the given node, heading up the tree.
/// This should only be called if the max increases - not for rebalancing or removals.
/// </summary>
/// <param name="node">The node to start propagating from</param>
private void PropagateIncrease ( IntervalTreeNode < K , V > node )
{
K max = node . Max ;
IntervalTreeNode < K , V > ptr = node ;
while ( ( ptr = ptr . Parent ) ! = null )
{
if ( max . CompareTo ( ptr . Max ) > 0 )
{
ptr . Max = max ;
}
else
{
break ;
}
}
}
/// <summary>
/// Propagate recalculating max value starting at the given node, heading up the tree.
/// This fully recalculates the max value from all children when there is potential for it to decrease.
/// </summary>
/// <param name="node">The node to start propagating from</param>
private void PropagateFull ( IntervalTreeNode < K , V > node )
{
IntervalTreeNode < K , V > ptr = node ;
do
{
K max = ptr . End ;
if ( ptr . Left ! = null & & ptr . Left . Max . CompareTo ( max ) > 0 )
{
max = ptr . Left . Max ;
}
if ( ptr . Right ! = null & & ptr . Right . Max . CompareTo ( max ) > 0 )
{
max = ptr . Right . Max ;
}
ptr . Max = max ;
} while ( ( ptr = ptr . Parent ) ! = null ) ;
}
/// <summary>
/// Insertion Mechanism for the interval tree. Similar to a BST insert, with the start of the range as the key.
/// Iterates the tree starting from the root and inserts a new node where all children in the left subtree are less than <paramref name="start"/>, and all children in the right subtree are greater than <paramref name="start"/>.
/// Each node can contain multiple values, and has an end address which is the maximum of all those values.
/// Post insertion, the "max" value of the node and all parents are updated.
/// </summary>
/// <param name="start">Start of the range to insert</param>
/// <param name="end">End of the range to insert</param>
/// <param name="value">Value to insert</param>
/// <returns>The inserted Node</returns>
private IntervalTreeNode < K , V > BSTInsert ( K start , K end , V value )
{
IntervalTreeNode < K , V > parent = null ;
IntervalTreeNode < K , V > node = _root ;
while ( node ! = null )
{
parent = node ;
int cmp = start . CompareTo ( node . Start ) ;
if ( cmp < 0 )
{
node = node . Left ;
}
else if ( cmp > 0 )
{
node = node . Right ;
}
else
{
node . Values . Add ( new RangeNode < K , V > ( start , end , value ) ) ;
if ( end . CompareTo ( node . End ) > 0 )
{
node . End = end ;
if ( end . CompareTo ( node . Max ) > 0 )
{
node . Max = end ;
PropagateIncrease ( node ) ;
}
}
_count + + ;
return node ;
}
}
IntervalTreeNode < K , V > newNode = new IntervalTreeNode < K , V > ( start , end , value , parent ) ;
if ( newNode . Parent = = null )
{
_root = newNode ;
}
else if ( start . CompareTo ( parent . Start ) < 0 )
{
parent . Left = newNode ;
}
else
{
parent . Right = newNode ;
}
PropagateIncrease ( newNode ) ;
_count + + ;
return newNode ;
}
/// <summary>
/// Removes instances of <paramref name="value"> from the dictionary after searching for it with <paramref name="key">.
/// </summary>
/// <param name="key">Key to search for</param>
/// <param name="value">Value to delete</param>
/// <returns>Number of deleted values</returns>
private int Delete ( K key , V value )
{
IntervalTreeNode < K , V > nodeToDelete = GetNode ( key ) ;
if ( nodeToDelete = = null )
{
return 0 ;
}
int removed = nodeToDelete . Values . RemoveAll ( node = > node . Value . Equals ( value ) ) ;
if ( nodeToDelete . Values . Count > 0 )
{
if ( removed > 0 )
{
nodeToDelete . End = nodeToDelete . Values . Max ( node = > node . End ) ;
// Recalculate max from children and new end.
PropagateFull ( nodeToDelete ) ;
}
return removed ;
}
IntervalTreeNode < K , V > replacementNode ;
if ( LeftOf ( nodeToDelete ) = = null | | RightOf ( nodeToDelete ) = = null )
{
replacementNode = nodeToDelete ;
}
else
{
replacementNode = PredecessorOf ( nodeToDelete ) ;
}
IntervalTreeNode < K , V > tmp = LeftOf ( replacementNode ) ? ? RightOf ( replacementNode ) ;
if ( tmp ! = null )
{
tmp . Parent = ParentOf ( replacementNode ) ;
}
if ( ParentOf ( replacementNode ) = = null )
{
_root = tmp ;
}
else if ( replacementNode = = LeftOf ( ParentOf ( replacementNode ) ) )
{
ParentOf ( replacementNode ) . Left = tmp ;
}
else
{
ParentOf ( replacementNode ) . Right = tmp ;
}
if ( replacementNode ! = nodeToDelete )
{
nodeToDelete . Start = replacementNode . Start ;
nodeToDelete . Values = replacementNode . Values ;
nodeToDelete . End = replacementNode . End ;
nodeToDelete . Max = replacementNode . Max ;
}
PropagateFull ( replacementNode ) ;
if ( tmp ! = null & & ColorOf ( replacementNode ) = = Black )
{
RestoreBalanceAfterRemoval ( tmp ) ;
}
return removed ;
}
/// <summary>
/// Returns the node with the largest key where <paramref name="node"/> is considered the root node.
/// </summary>
/// <param name="node">Root Node</param>
/// <returns>Node with the maximum key in the tree of <paramref name="node"/></returns>
private static IntervalTreeNode < K , V > Maximum ( IntervalTreeNode < K , V > node )
{
IntervalTreeNode < K , V > tmp = node ;
while ( tmp . Right ! = null )
{
tmp = tmp . Right ;
}
return tmp ;
}
/// <summary>
/// Finds the node whose key is immediately less than <paramref name="node"/>.
/// </summary>
/// <param name="node">Node to find the predecessor of</param>
/// <returns>Predecessor of <paramref name="node"/></returns>
private static IntervalTreeNode < K , V > PredecessorOf ( IntervalTreeNode < K , V > node )
{
if ( node . Left ! = null )
{
return Maximum ( node . Left ) ;
}
IntervalTreeNode < K , V > parent = node . Parent ;
while ( parent ! = null & & node = = parent . Left )
{
node = parent ;
parent = parent . Parent ;
}
return parent ;
}
#endregion
#region Private Methods ( RBL )
private void RestoreBalanceAfterRemoval ( IntervalTreeNode < K , V > balanceNode )
{
IntervalTreeNode < K , V > ptr = balanceNode ;
while ( ptr ! = _root & & ColorOf ( ptr ) = = Black )
{
if ( ptr = = LeftOf ( ParentOf ( ptr ) ) )
{
IntervalTreeNode < K , V > sibling = RightOf ( ParentOf ( ptr ) ) ;
if ( ColorOf ( sibling ) = = Red )
{
SetColor ( sibling , Black ) ;
SetColor ( ParentOf ( ptr ) , Red ) ;
RotateLeft ( ParentOf ( ptr ) ) ;
sibling = RightOf ( ParentOf ( ptr ) ) ;
}
if ( ColorOf ( LeftOf ( sibling ) ) = = Black & & ColorOf ( RightOf ( sibling ) ) = = Black )
{
SetColor ( sibling , Red ) ;
ptr = ParentOf ( ptr ) ;
}
else
{
if ( ColorOf ( RightOf ( sibling ) ) = = Black )
{
SetColor ( LeftOf ( sibling ) , Black ) ;
SetColor ( sibling , Red ) ;
RotateRight ( sibling ) ;
sibling = RightOf ( ParentOf ( ptr ) ) ;
}
SetColor ( sibling , ColorOf ( ParentOf ( ptr ) ) ) ;
SetColor ( ParentOf ( ptr ) , Black ) ;
SetColor ( RightOf ( sibling ) , Black ) ;
RotateLeft ( ParentOf ( ptr ) ) ;
ptr = _root ;
}
}
else
{
IntervalTreeNode < K , V > sibling = LeftOf ( ParentOf ( ptr ) ) ;
if ( ColorOf ( sibling ) = = Red )
{
SetColor ( sibling , Black ) ;
SetColor ( ParentOf ( ptr ) , Red ) ;
RotateRight ( ParentOf ( ptr ) ) ;
sibling = LeftOf ( ParentOf ( ptr ) ) ;
}
if ( ColorOf ( RightOf ( sibling ) ) = = Black & & ColorOf ( LeftOf ( sibling ) ) = = Black )
{
SetColor ( sibling , Red ) ;
ptr = ParentOf ( ptr ) ;
}
else
{
if ( ColorOf ( LeftOf ( sibling ) ) = = Black )
{
SetColor ( RightOf ( sibling ) , Black ) ;
SetColor ( sibling , Red ) ;
RotateLeft ( sibling ) ;
sibling = LeftOf ( ParentOf ( ptr ) ) ;
}
SetColor ( sibling , ColorOf ( ParentOf ( ptr ) ) ) ;
SetColor ( ParentOf ( ptr ) , Black ) ;
SetColor ( LeftOf ( sibling ) , Black ) ;
RotateRight ( ParentOf ( ptr ) ) ;
ptr = _root ;
}
}
}
SetColor ( ptr , Black ) ;
}
private void RestoreBalanceAfterInsertion ( IntervalTreeNode < K , V > balanceNode )
{
SetColor ( balanceNode , Red ) ;
while ( balanceNode ! = null & & balanceNode ! = _root & & ColorOf ( ParentOf ( balanceNode ) ) = = Red )
{
if ( ParentOf ( balanceNode ) = = LeftOf ( ParentOf ( ParentOf ( balanceNode ) ) ) )
{
IntervalTreeNode < K , V > sibling = RightOf ( ParentOf ( ParentOf ( balanceNode ) ) ) ;
if ( ColorOf ( sibling ) = = Red )
{
SetColor ( ParentOf ( balanceNode ) , Black ) ;
SetColor ( sibling , Black ) ;
SetColor ( ParentOf ( ParentOf ( balanceNode ) ) , Red ) ;
balanceNode = ParentOf ( ParentOf ( balanceNode ) ) ;
}
else
{
if ( balanceNode = = RightOf ( ParentOf ( balanceNode ) ) )
{
balanceNode = ParentOf ( balanceNode ) ;
RotateLeft ( balanceNode ) ;
}
SetColor ( ParentOf ( balanceNode ) , Black ) ;
SetColor ( ParentOf ( ParentOf ( balanceNode ) ) , Red ) ;
RotateRight ( ParentOf ( ParentOf ( balanceNode ) ) ) ;
}
}
else
{
IntervalTreeNode < K , V > sibling = LeftOf ( ParentOf ( ParentOf ( balanceNode ) ) ) ;
if ( ColorOf ( sibling ) = = Red )
{
SetColor ( ParentOf ( balanceNode ) , Black ) ;
SetColor ( sibling , Black ) ;
SetColor ( ParentOf ( ParentOf ( balanceNode ) ) , Red ) ;
balanceNode = ParentOf ( ParentOf ( balanceNode ) ) ;
}
else
{
if ( balanceNode = = LeftOf ( ParentOf ( balanceNode ) ) )
{
balanceNode = ParentOf ( balanceNode ) ;
RotateRight ( balanceNode ) ;
}
SetColor ( ParentOf ( balanceNode ) , Black ) ;
SetColor ( ParentOf ( ParentOf ( balanceNode ) ) , Red ) ;
RotateLeft ( ParentOf ( ParentOf ( balanceNode ) ) ) ;
}
}
}
SetColor ( _root , Black ) ;
}
private void RotateLeft ( IntervalTreeNode < K , V > node )
{
if ( node ! = null )
{
IntervalTreeNode < K , V > right = RightOf ( node ) ;
node . Right = LeftOf ( right ) ;
if ( node . Right ! = null )
{
2022-05-03 01:30:02 +02:00
node . Right . Parent = node ;
2021-09-19 14:55:07 +02:00
}
IntervalTreeNode < K , V > nodeParent = ParentOf ( node ) ;
right . Parent = nodeParent ;
if ( nodeParent = = null )
{
_root = right ;
}
else if ( node = = LeftOf ( nodeParent ) )
{
nodeParent . Left = right ;
}
else
{
2022-05-03 01:30:02 +02:00
nodeParent . Right = right ;
2021-09-19 14:55:07 +02:00
}
right . Left = node ;
node . Parent = right ;
PropagateFull ( node ) ;
}
}
private void RotateRight ( IntervalTreeNode < K , V > node )
{
if ( node ! = null )
{
IntervalTreeNode < K , V > left = LeftOf ( node ) ;
node . Left = RightOf ( left ) ;
if ( node . Left ! = null )
{
node . Left . Parent = node ;
}
IntervalTreeNode < K , V > nodeParent = ParentOf ( node ) ;
left . Parent = nodeParent ;
if ( nodeParent = = null )
{
_root = left ;
}
else if ( node = = RightOf ( nodeParent ) )
{
nodeParent . Right = left ;
}
else
{
nodeParent . Left = left ;
}
left . Right = node ;
node . Parent = left ;
PropagateFull ( node ) ;
}
}
#endregion
#region Safety - Methods
// These methods save memory by allowing us to forego sentinel nil nodes, as well as serve as protection against NullReferenceExceptions.
/// <summary>
/// Returns the color of <paramref name="node"/>, or Black if it is null.
/// </summary>
/// <param name="node">Node</param>
/// <returns>The boolean color of <paramref name="node"/>, or black if null</returns>
private static bool ColorOf ( IntervalTreeNode < K , V > node )
{
return node = = null | | node . Color ;
}
/// <summary>
/// Sets the color of <paramref name="node"/> node to <paramref name="color"/>.
/// <br></br>
/// This method does nothing if <paramref name="node"/> is null.
/// </summary>
/// <param name="node">Node to set the color of</param>
/// <param name="color">Color (Boolean)</param>
private static void SetColor ( IntervalTreeNode < K , V > node , bool color )
{
if ( node ! = null )
{
node . Color = color ;
}
}
/// <summary>
/// This method returns the left node of <paramref name="node"/>, or null if <paramref name="node"/> is null.
/// </summary>
/// <param name="node">Node to retrieve the left child from</param>
/// <returns>Left child of <paramref name="node"/></returns>
private static IntervalTreeNode < K , V > LeftOf ( IntervalTreeNode < K , V > node )
{
return node ? . Left ;
}
/// <summary>
/// This method returns the right node of <paramref name="node"/>, or null if <paramref name="node"/> is null.
/// </summary>
/// <param name="node">Node to retrieve the right child from</param>
/// <returns>Right child of <paramref name="node"/></returns>
private static IntervalTreeNode < K , V > RightOf ( IntervalTreeNode < K , V > node )
{
return node ? . Right ;
}
/// <summary>
/// Returns the parent node of <paramref name="node"/>, or null if <paramref name="node"/> is null.
/// </summary>
/// <param name="node">Node to retrieve the parent from</param>
/// <returns>Parent of <paramref name="node"/></returns>
private static IntervalTreeNode < K , V > ParentOf ( IntervalTreeNode < K , V > node )
{
return node ? . Parent ;
}
#endregion
public bool ContainsKey ( K key )
{
if ( key = = null )
{
throw new ArgumentNullException ( nameof ( key ) ) ;
}
return GetNode ( key ) ! = null ;
}
public void Clear ( )
{
_root = null ;
_count = 0 ;
}
}
/// <summary>
/// Represents a value and its start and end keys.
/// </summary>
/// <typeparam name="K"></typeparam>
/// <typeparam name="V"></typeparam>
public readonly struct RangeNode < K , V >
{
public readonly K Start ;
public readonly K End ;
public readonly V Value ;
public RangeNode ( K start , K end , V value )
{
Start = start ;
End = end ;
Value = value ;
}
}
/// <summary>
/// Represents a node in the IntervalTree which contains start and end keys of type K, and a value of generic type V.
/// </summary>
/// <typeparam name="K">Key type of the node</typeparam>
/// <typeparam name="V">Value type of the node</typeparam>
2022-05-03 01:30:02 +02:00
class IntervalTreeNode < K , V >
2021-09-19 14:55:07 +02:00
{
2022-05-03 01:30:02 +02:00
public bool Color = true ;
public IntervalTreeNode < K , V > Left = null ;
public IntervalTreeNode < K , V > Right = null ;
public IntervalTreeNode < K , V > Parent = null ;
2021-09-19 14:55:07 +02:00
/// <summary>
/// The start of the range.
/// </summary>
2022-05-03 01:30:02 +02:00
public K Start ;
2021-09-19 14:55:07 +02:00
/// <summary>
/// The end of the range - maximum of all in the Values list.
/// </summary>
2022-05-03 01:30:02 +02:00
public K End ;
2021-09-19 14:55:07 +02:00
/// <summary>
/// The maximum end value of this node and all its children.
/// </summary>
2022-05-03 01:30:02 +02:00
public K Max ;
2021-09-19 14:55:07 +02:00
2022-05-03 01:30:02 +02:00
public List < RangeNode < K , V > > Values ;
2021-09-19 14:55:07 +02:00
public IntervalTreeNode ( K start , K end , V value , IntervalTreeNode < K , V > parent )
{
2022-05-03 01:30:02 +02:00
Start = start ;
End = end ;
Max = end ;
Values = new List < RangeNode < K , V > > { new RangeNode < K , V > ( start , end , value ) } ;
Parent = parent ;
2021-09-19 14:55:07 +02:00
}
}
}