using ARMeilleure.State; using NUnit.Framework; using Ryujinx.Cpu; using Ryujinx.Memory; using Ryujinx.Tests.Unicorn; using System; using MemoryPermission = Ryujinx.Tests.Unicorn.MemoryPermission; namespace Ryujinx.Tests.Cpu { [TestFixture] public class CpuTest32 { private uint _currAddress; private ulong _size; private uint _entryPoint; private MemoryBlock _ram; private MemoryManager _memory; private ExecutionContext _context; private CpuContext _cpuContext; private static bool _unicornAvailable; private UnicornAArch32 _unicornEmu; private bool usingMemory; static CpuTest32() { _unicornAvailable = UnicornAArch32.IsAvailable(); if (!_unicornAvailable) { Console.WriteLine("WARNING: Could not find Unicorn."); } } [SetUp] public void Setup() { _currAddress = 0x1000; _size = 0x1000; _entryPoint = _currAddress; _ram = new MemoryBlock(_size * 2); _memory = new MemoryManager(_ram, 1UL << 16); _memory.Map(_currAddress, 0, _size * 2); _context = CpuContext.CreateExecutionContext(); _context.IsAarch32 = true; _cpuContext = new CpuContext(_memory); if (_unicornAvailable) { _unicornEmu = new UnicornAArch32(); _unicornEmu.MemoryMap(_currAddress, _size, MemoryPermission.READ | MemoryPermission.EXEC); _unicornEmu.MemoryMap(_currAddress + _size, _size, MemoryPermission.READ | MemoryPermission.WRITE); _unicornEmu.PC = _entryPoint; } } [TearDown] public void Teardown() { _memory.Dispose(); _context.Dispose(); _ram.Dispose(); _memory = null; _context = null; _cpuContext = null; _unicornEmu = null; } protected void Reset() { Teardown(); Setup(); } protected void Opcode(uint opcode) { _memory.Write(_currAddress, opcode); if (_unicornAvailable) { _unicornEmu.MemoryWrite32(_currAddress, opcode); } _currAddress += 4; } protected ExecutionContext GetContext() => _context; protected void SetContext(uint r0 = 0, uint r1 = 0, uint r2 = 0, uint r3 = 0, uint sp = 0, V128 v0 = default, V128 v1 = default, V128 v2 = default, V128 v3 = default, V128 v4 = default, V128 v5 = default, V128 v14 = default, V128 v15 = default, bool overflow = false, bool carry = false, bool zero = false, bool negative = false, int fpscr = 0) { _context.SetX(0, r0); _context.SetX(1, r1); _context.SetX(2, r2); _context.SetX(3, r3); _context.SetX(0xd, sp); _context.SetV(0, v0); _context.SetV(1, v1); _context.SetV(2, v2); _context.SetV(3, v3); _context.SetV(4, v4); _context.SetV(5, v5); _context.SetV(14, v14); _context.SetV(15, v15); _context.SetPstateFlag(PState.VFlag, overflow); _context.SetPstateFlag(PState.CFlag, carry); _context.SetPstateFlag(PState.ZFlag, zero); _context.SetPstateFlag(PState.NFlag, negative); _context.Fpsr = FPSR.A32Mask & (FPSR)fpscr; _context.Fpcr = FPCR.A32Mask & (FPCR)fpscr; if (_unicornAvailable) { _unicornEmu.R[0] = r0; _unicornEmu.R[1] = r1; _unicornEmu.R[2] = r2; _unicornEmu.R[3] = r3; _unicornEmu.SP = sp; _unicornEmu.Q[0] = V128ToSimdValue(v0); _unicornEmu.Q[1] = V128ToSimdValue(v1); _unicornEmu.Q[2] = V128ToSimdValue(v2); _unicornEmu.Q[3] = V128ToSimdValue(v3); _unicornEmu.Q[4] = V128ToSimdValue(v4); _unicornEmu.Q[5] = V128ToSimdValue(v5); _unicornEmu.Q[14] = V128ToSimdValue(v14); _unicornEmu.Q[15] = V128ToSimdValue(v15); _unicornEmu.OverflowFlag = overflow; _unicornEmu.CarryFlag = carry; _unicornEmu.ZeroFlag = zero; _unicornEmu.NegativeFlag = negative; _unicornEmu.Fpscr = fpscr; } } protected void ExecuteOpcodes(bool runUnicorn = true) { _cpuContext.Execute(_context, _entryPoint); if (_unicornAvailable && runUnicorn) { _unicornEmu.RunForCount((ulong)(_currAddress - _entryPoint - 4) / 4); } } protected ExecutionContext SingleOpcode(uint opcode, uint r0 = 0, uint r1 = 0, uint r2 = 0, uint r3 = 0, uint sp = 0, V128 v0 = default, V128 v1 = default, V128 v2 = default, V128 v3 = default, V128 v4 = default, V128 v5 = default, V128 v14 = default, V128 v15 = default, bool overflow = false, bool carry = false, bool zero = false, bool negative = false, int fpscr = 0, bool copyFpFlags = false, bool runUnicorn = true) { Opcode(opcode); if (copyFpFlags) { Opcode(0xeef1fa10); } Opcode(0xe12fff1e); // BX LR SetContext(r0, r1, r2, r3, sp, v0, v1, v2, v3, v4, v5, v14, v15, overflow, carry, zero, negative, fpscr); ExecuteOpcodes(runUnicorn); return GetContext(); } protected void SetWorkingMemory(byte[] data) { _memory.Write(0x2000, data); if (_unicornAvailable) { _unicornEmu.MemoryWrite((ulong)(0x2000), data); } usingMemory = true; // When true, CompareAgainstUnicorn checks the working memory for equality too. } /// <summary>Rounding Mode control field.</summary> public enum RMode { /// <summary>Round to Nearest mode.</summary> Rn, /// <summary>Round towards Plus Infinity mode.</summary> Rp, /// <summary>Round towards Minus Infinity mode.</summary> Rm, /// <summary>Round towards Zero mode.</summary> Rz }; /// <summary>Floating-point Control Register.</summary> protected enum Fpcr { /// <summary>Rounding Mode control field.</summary> RMode = 22, /// <summary>Flush-to-zero mode control bit.</summary> Fz = 24, /// <summary>Default NaN mode control bit.</summary> Dn = 25, /// <summary>Alternative half-precision control bit.</summary> Ahp = 26 } /// <summary>Floating-point Status Register.</summary> [Flags] protected enum Fpsr { None = 0, /// <summary>Invalid Operation cumulative floating-point exception bit.</summary> Ioc = 1 << 0, /// <summary>Divide by Zero cumulative floating-point exception bit.</summary> Dzc = 1 << 1, /// <summary>Overflow cumulative floating-point exception bit.</summary> Ofc = 1 << 2, /// <summary>Underflow cumulative floating-point exception bit.</summary> Ufc = 1 << 3, /// <summary>Inexact cumulative floating-point exception bit.</summary> Ixc = 1 << 4, /// <summary>Input Denormal cumulative floating-point exception bit.</summary> Idc = 1 << 7, /// <summary>Cumulative saturation bit.</summary> Qc = 1 << 27, /// <summary>NZCV flags</summary> Nzcv = (1 << 28) | (1 << 29) | (1 << 30) | (1 << 31) } [Flags] protected enum FpSkips { None = 0, IfNaNS = 1, IfNaND = 2, IfUnderflow = 4, IfOverflow = 8 } protected enum FpTolerances { None, UpToOneUlpsS, UpToOneUlpsD } protected void CompareAgainstUnicorn( Fpsr fpsrMask = Fpsr.None, FpSkips fpSkips = FpSkips.None, FpTolerances fpTolerances = FpTolerances.None) { if (!_unicornAvailable) { return; } if (fpSkips != FpSkips.None) { ManageFpSkips(fpSkips); } Assert.That(_context.GetX(0), Is.EqualTo(_unicornEmu.R[0])); Assert.That(_context.GetX(1), Is.EqualTo(_unicornEmu.R[1])); Assert.That(_context.GetX(2), Is.EqualTo(_unicornEmu.R[2])); Assert.That(_context.GetX(3), Is.EqualTo(_unicornEmu.R[3])); Assert.That(_context.GetX(4), Is.EqualTo(_unicornEmu.R[4])); Assert.That(_context.GetX(5), Is.EqualTo(_unicornEmu.R[5])); Assert.That(_context.GetX(6), Is.EqualTo(_unicornEmu.R[6])); Assert.That(_context.GetX(7), Is.EqualTo(_unicornEmu.R[7])); Assert.That(_context.GetX(8), Is.EqualTo(_unicornEmu.R[8])); Assert.That(_context.GetX(9), Is.EqualTo(_unicornEmu.R[9])); Assert.That(_context.GetX(10), Is.EqualTo(_unicornEmu.R[10])); Assert.That(_context.GetX(11), Is.EqualTo(_unicornEmu.R[11])); Assert.That(_context.GetX(12), Is.EqualTo(_unicornEmu.R[12])); Assert.That(_context.GetX(13), Is.EqualTo(_unicornEmu.R[13])); Assert.That(_context.GetX(14), Is.EqualTo(_unicornEmu.R[14])); if (fpTolerances == FpTolerances.None) { Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0])); } else { ManageFpTolerances(fpTolerances); } Assert.That(V128ToSimdValue(_context.GetV(1)), Is.EqualTo(_unicornEmu.Q[1])); Assert.That(V128ToSimdValue(_context.GetV(2)), Is.EqualTo(_unicornEmu.Q[2])); Assert.That(V128ToSimdValue(_context.GetV(3)), Is.EqualTo(_unicornEmu.Q[3])); Assert.That(V128ToSimdValue(_context.GetV(4)), Is.EqualTo(_unicornEmu.Q[4])); Assert.That(V128ToSimdValue(_context.GetV(5)), Is.EqualTo(_unicornEmu.Q[5])); Assert.That(V128ToSimdValue(_context.GetV(6)), Is.EqualTo(_unicornEmu.Q[6])); Assert.That(V128ToSimdValue(_context.GetV(7)), Is.EqualTo(_unicornEmu.Q[7])); Assert.That(V128ToSimdValue(_context.GetV(8)), Is.EqualTo(_unicornEmu.Q[8])); Assert.That(V128ToSimdValue(_context.GetV(9)), Is.EqualTo(_unicornEmu.Q[9])); Assert.That(V128ToSimdValue(_context.GetV(10)), Is.EqualTo(_unicornEmu.Q[10])); Assert.That(V128ToSimdValue(_context.GetV(11)), Is.EqualTo(_unicornEmu.Q[11])); Assert.That(V128ToSimdValue(_context.GetV(12)), Is.EqualTo(_unicornEmu.Q[12])); Assert.That(V128ToSimdValue(_context.GetV(13)), Is.EqualTo(_unicornEmu.Q[13])); Assert.That(V128ToSimdValue(_context.GetV(14)), Is.EqualTo(_unicornEmu.Q[14])); Assert.That(V128ToSimdValue(_context.GetV(15)), Is.EqualTo(_unicornEmu.Q[15])); Assert.That((int)_context.Fpcr | ((int)_context.Fpsr & (int)fpsrMask), Is.EqualTo(_unicornEmu.Fpscr)); Assert.That(_context.GetPstateFlag(PState.QFlag), Is.EqualTo(_unicornEmu.QFlag)); Assert.That(_context.GetPstateFlag(PState.VFlag), Is.EqualTo(_unicornEmu.OverflowFlag)); Assert.That(_context.GetPstateFlag(PState.CFlag), Is.EqualTo(_unicornEmu.CarryFlag)); Assert.That(_context.GetPstateFlag(PState.ZFlag), Is.EqualTo(_unicornEmu.ZeroFlag)); Assert.That(_context.GetPstateFlag(PState.NFlag), Is.EqualTo(_unicornEmu.NegativeFlag)); if (usingMemory) { ReadOnlySpan<byte> meilleureMem = _memory.GetSpan(0x2000, (int)_size); byte[] unicornMem = _unicornEmu.MemoryRead(0x2000, _size); for (int i = 0; i < (int)_size; i++) { Assert.AreEqual(meilleureMem[i], unicornMem[i]); } } } private void ManageFpSkips(FpSkips fpSkips) { if (fpSkips.HasFlag(FpSkips.IfNaNS)) { if (float.IsNaN(_unicornEmu.Q[0].AsFloat())) { Assert.Ignore("NaN test."); } } else if (fpSkips.HasFlag(FpSkips.IfNaND)) { if (double.IsNaN(_unicornEmu.Q[0].AsDouble())) { Assert.Ignore("NaN test."); } } if (fpSkips.HasFlag(FpSkips.IfUnderflow)) { if ((_unicornEmu.Fpscr & (int)Fpsr.Ufc) != 0) { Assert.Ignore("Underflow test."); } } if (fpSkips.HasFlag(FpSkips.IfOverflow)) { if ((_unicornEmu.Fpscr & (int)Fpsr.Ofc) != 0) { Assert.Ignore("Overflow test."); } } } private void ManageFpTolerances(FpTolerances fpTolerances) { bool IsNormalOrSubnormalS(float f) => float.IsNormal(f) || float.IsSubnormal(f); bool IsNormalOrSubnormalD(double d) => double.IsNormal(d) || double.IsSubnormal(d); if (!Is.EqualTo(_unicornEmu.Q[0]).ApplyTo(V128ToSimdValue(_context.GetV(0))).IsSuccess) { if (fpTolerances == FpTolerances.UpToOneUlpsS) { if (IsNormalOrSubnormalS(_unicornEmu.Q[0].AsFloat()) && IsNormalOrSubnormalS(_context.GetV(0).As<float>())) { Assert.That(_context.GetV(0).Extract<float>(0), Is.EqualTo(_unicornEmu.Q[0].GetFloat(0)).Within(1).Ulps); Assert.That(_context.GetV(0).Extract<float>(1), Is.EqualTo(_unicornEmu.Q[0].GetFloat(1)).Within(1).Ulps); Assert.That(_context.GetV(0).Extract<float>(2), Is.EqualTo(_unicornEmu.Q[0].GetFloat(2)).Within(1).Ulps); Assert.That(_context.GetV(0).Extract<float>(3), Is.EqualTo(_unicornEmu.Q[0].GetFloat(3)).Within(1).Ulps); Console.WriteLine(fpTolerances); } else { Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0])); } } if (fpTolerances == FpTolerances.UpToOneUlpsD) { if (IsNormalOrSubnormalD(_unicornEmu.Q[0].AsDouble()) && IsNormalOrSubnormalD(_context.GetV(0).As<double>())) { Assert.That(_context.GetV(0).Extract<double>(0), Is.EqualTo(_unicornEmu.Q[0].GetDouble(0)).Within(1).Ulps); Assert.That(_context.GetV(0).Extract<double>(1), Is.EqualTo(_unicornEmu.Q[0].GetDouble(1)).Within(1).Ulps); Console.WriteLine(fpTolerances); } else { Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0])); } } } } private static SimdValue V128ToSimdValue(V128 value) { return new SimdValue(value.Extract<ulong>(0), value.Extract<ulong>(1)); } protected static V128 MakeVectorScalar(float value) => new V128(value); protected static V128 MakeVectorScalar(double value) => new V128(value); protected static V128 MakeVectorE0(ulong e0) => new V128(e0, 0); protected static V128 MakeVectorE1(ulong e1) => new V128(0, e1); protected static V128 MakeVectorE0E1(ulong e0, ulong e1) => new V128(e0, e1); protected static ulong GetVectorE0(V128 vector) => vector.Extract<ulong>(0); protected static ulong GetVectorE1(V128 vector) => vector.Extract<ulong>(1); protected static ushort GenNormalH() { uint rnd; do rnd = TestContext.CurrentContext.Random.NextUShort(); while ((rnd & 0x7C00u) == 0u || (~rnd & 0x7C00u) == 0u); return (ushort)rnd; } protected static ushort GenSubnormalH() { uint rnd; do rnd = TestContext.CurrentContext.Random.NextUShort(); while ((rnd & 0x03FFu) == 0u); return (ushort)(rnd & 0x83FFu); } protected static uint GenNormalS() { uint rnd; do rnd = TestContext.CurrentContext.Random.NextUInt(); while ((rnd & 0x7F800000u) == 0u || (~rnd & 0x7F800000u) == 0u); return rnd; } protected static uint GenSubnormalS() { uint rnd; do rnd = TestContext.CurrentContext.Random.NextUInt(); while ((rnd & 0x007FFFFFu) == 0u); return rnd & 0x807FFFFFu; } protected static ulong GenNormalD() { ulong rnd; do rnd = TestContext.CurrentContext.Random.NextULong(); while ((rnd & 0x7FF0000000000000ul) == 0ul || (~rnd & 0x7FF0000000000000ul) == 0ul); return rnd; } protected static ulong GenSubnormalD() { ulong rnd; do rnd = TestContext.CurrentContext.Random.NextULong(); while ((rnd & 0x000FFFFFFFFFFFFFul) == 0ul); return rnd & 0x800FFFFFFFFFFFFFul; } } }