using ChocolArm64; using ChocolArm64.Memory; using ChocolArm64.State; using ChocolArm64.Translation; using NUnit.Framework; using Ryujinx.Tests.Unicorn; using System; using System.Runtime.InteropServices; using System.Runtime.Intrinsics; using System.Runtime.Intrinsics.X86; using System.Threading; namespace Ryujinx.Tests.Cpu { [TestFixture] public class CpuTest { protected long Position { get; private set; } private long _size; private long _entryPoint; private IntPtr _ramPointer; private MemoryManager _memory; private CpuThread _thread; private static bool _unicornAvailable; private UnicornAArch64 _unicornEmu; static CpuTest() { _unicornAvailable = UnicornAArch64.IsAvailable(); if (!_unicornAvailable) { Console.WriteLine("WARNING: Could not find Unicorn."); } } [SetUp] public void Setup() { Position = 0x1000; _size = 0x1000; _entryPoint = Position; _ramPointer = Marshal.AllocHGlobal(new IntPtr(_size)); _memory = new MemoryManager(_ramPointer); _memory.Map(Position, 0, _size); Translator translator = new Translator(_memory); _thread = new CpuThread(translator, _memory, _entryPoint); if (_unicornAvailable) { _unicornEmu = new UnicornAArch64(); _unicornEmu.MemoryMap((ulong)Position, (ulong)_size, MemoryPermission.READ | MemoryPermission.EXEC); _unicornEmu.PC = (ulong)_entryPoint; } } [TearDown] public void Teardown() { Marshal.FreeHGlobal(_ramPointer); _memory = null; _thread = null; _unicornEmu = null; } protected void Reset() { Teardown(); Setup(); } protected void Opcode(uint opcode) { _thread.Memory.WriteUInt32(Position, opcode); if (_unicornAvailable) { _unicornEmu.MemoryWrite32((ulong)Position, opcode); } Position += 4; } protected void SetThreadState(ulong x0 = 0, ulong x1 = 0, ulong x2 = 0, ulong x3 = 0, ulong x31 = 0, Vector128 v0 = default(Vector128), Vector128 v1 = default(Vector128), Vector128 v2 = default(Vector128), Vector128 v3 = default(Vector128), Vector128 v4 = default(Vector128), Vector128 v5 = default(Vector128), Vector128 v30 = default(Vector128), Vector128 v31 = default(Vector128), bool overflow = false, bool carry = false, bool zero = false, bool negative = false, int fpcr = 0x0, int fpsr = 0x0) { _thread.ThreadState.X0 = x0; _thread.ThreadState.X1 = x1; _thread.ThreadState.X2 = x2; _thread.ThreadState.X3 = x3; _thread.ThreadState.X31 = x31; _thread.ThreadState.V0 = v0; _thread.ThreadState.V1 = v1; _thread.ThreadState.V2 = v2; _thread.ThreadState.V3 = v3; _thread.ThreadState.V4 = v4; _thread.ThreadState.V5 = v5; _thread.ThreadState.V30 = v30; _thread.ThreadState.V31 = v31; _thread.ThreadState.Overflow = overflow; _thread.ThreadState.Carry = carry; _thread.ThreadState.Zero = zero; _thread.ThreadState.Negative = negative; _thread.ThreadState.Fpcr = fpcr; _thread.ThreadState.Fpsr = fpsr; if (_unicornAvailable) { _unicornEmu.X[0] = x0; _unicornEmu.X[1] = x1; _unicornEmu.X[2] = x2; _unicornEmu.X[3] = x3; _unicornEmu.SP = x31; _unicornEmu.Q[0] = v0; _unicornEmu.Q[1] = v1; _unicornEmu.Q[2] = v2; _unicornEmu.Q[3] = v3; _unicornEmu.Q[4] = v4; _unicornEmu.Q[5] = v5; _unicornEmu.Q[30] = v30; _unicornEmu.Q[31] = v31; _unicornEmu.OverflowFlag = overflow; _unicornEmu.CarryFlag = carry; _unicornEmu.ZeroFlag = zero; _unicornEmu.NegativeFlag = negative; _unicornEmu.Fpcr = fpcr; _unicornEmu.Fpsr = fpsr; } } protected void ExecuteOpcodes() { using (ManualResetEvent wait = new ManualResetEvent(false)) { _thread.ThreadState.Break += (sender, e) => _thread.StopExecution(); _thread.WorkFinished += (sender, e) => wait.Set(); _thread.Execute(); wait.WaitOne(); } if (_unicornAvailable) { _unicornEmu.RunForCount((ulong)(Position - _entryPoint - 8) / 4); } } protected CpuThreadState GetThreadState() => _thread.ThreadState; protected CpuThreadState SingleOpcode(uint opcode, ulong x0 = 0, ulong x1 = 0, ulong x2 = 0, ulong x3 = 0, ulong x31 = 0, Vector128 v0 = default(Vector128), Vector128 v1 = default(Vector128), Vector128 v2 = default(Vector128), Vector128 v3 = default(Vector128), Vector128 v4 = default(Vector128), Vector128 v5 = default(Vector128), Vector128 v30 = default(Vector128), Vector128 v31 = default(Vector128), bool overflow = false, bool carry = false, bool zero = false, bool negative = false, int fpcr = 0x0, int fpsr = 0x0) { Opcode(opcode); Opcode(0xD4200000); // BRK #0 Opcode(0xD65F03C0); // RET SetThreadState(x0, x1, x2, x3, x31, v0, v1, v2, v3, v4, v5, v30, v31, overflow, carry, zero, negative, fpcr, fpsr); ExecuteOpcodes(); return GetThreadState(); } /// Rounding Mode control field. public enum RMode { /// Round to Nearest mode. Rn, /// Round towards Plus Infinity mode. Rp, /// Round towards Minus Infinity mode. Rm, /// Round towards Zero mode. Rz }; /// Floating-point Control Register. protected enum Fpcr { /// Rounding Mode control field. RMode = 22, /// Flush-to-zero mode control bit. Fz = 24, /// Default NaN mode control bit. Dn = 25, /// Alternative half-precision control bit. Ahp = 26 } /// Floating-point Status Register. [Flags] protected enum Fpsr { None = 0, /// Invalid Operation cumulative floating-point exception bit. Ioc = 1 << 0, /// Divide by Zero cumulative floating-point exception bit. Dzc = 1 << 1, /// Overflow cumulative floating-point exception bit. Ofc = 1 << 2, /// Underflow cumulative floating-point exception bit. Ufc = 1 << 3, /// Inexact cumulative floating-point exception bit. Ixc = 1 << 4, /// Input Denormal cumulative floating-point exception bit. Idc = 1 << 7, /// Cumulative saturation bit. Qc = 1 << 27 } [Flags] protected enum FpSkips { None = 0, IfNaNS = 1, IfNaND = 2, IfUnderflow = 4, IfOverflow = 8 } protected enum FpTolerances { None, UpToOneUlpsS, UpToOneUlpsD } protected void CompareAgainstUnicorn( Fpsr fpsrMask = Fpsr.None, FpSkips fpSkips = FpSkips.None, FpTolerances fpTolerances = FpTolerances.None) { if (!_unicornAvailable) { return; } if (fpSkips != FpSkips.None) { ManageFpSkips(fpSkips); } Assert.That(_thread.ThreadState.X0, Is.EqualTo(_unicornEmu.X[0])); Assert.That(_thread.ThreadState.X1, Is.EqualTo(_unicornEmu.X[1])); Assert.That(_thread.ThreadState.X2, Is.EqualTo(_unicornEmu.X[2])); Assert.That(_thread.ThreadState.X3, Is.EqualTo(_unicornEmu.X[3])); Assert.That(_thread.ThreadState.X4, Is.EqualTo(_unicornEmu.X[4])); Assert.That(_thread.ThreadState.X5, Is.EqualTo(_unicornEmu.X[5])); Assert.That(_thread.ThreadState.X6, Is.EqualTo(_unicornEmu.X[6])); Assert.That(_thread.ThreadState.X7, Is.EqualTo(_unicornEmu.X[7])); Assert.That(_thread.ThreadState.X8, Is.EqualTo(_unicornEmu.X[8])); Assert.That(_thread.ThreadState.X9, Is.EqualTo(_unicornEmu.X[9])); Assert.That(_thread.ThreadState.X10, Is.EqualTo(_unicornEmu.X[10])); Assert.That(_thread.ThreadState.X11, Is.EqualTo(_unicornEmu.X[11])); Assert.That(_thread.ThreadState.X12, Is.EqualTo(_unicornEmu.X[12])); Assert.That(_thread.ThreadState.X13, Is.EqualTo(_unicornEmu.X[13])); Assert.That(_thread.ThreadState.X14, Is.EqualTo(_unicornEmu.X[14])); Assert.That(_thread.ThreadState.X15, Is.EqualTo(_unicornEmu.X[15])); Assert.That(_thread.ThreadState.X16, Is.EqualTo(_unicornEmu.X[16])); Assert.That(_thread.ThreadState.X17, Is.EqualTo(_unicornEmu.X[17])); Assert.That(_thread.ThreadState.X18, Is.EqualTo(_unicornEmu.X[18])); Assert.That(_thread.ThreadState.X19, Is.EqualTo(_unicornEmu.X[19])); Assert.That(_thread.ThreadState.X20, Is.EqualTo(_unicornEmu.X[20])); Assert.That(_thread.ThreadState.X21, Is.EqualTo(_unicornEmu.X[21])); Assert.That(_thread.ThreadState.X22, Is.EqualTo(_unicornEmu.X[22])); Assert.That(_thread.ThreadState.X23, Is.EqualTo(_unicornEmu.X[23])); Assert.That(_thread.ThreadState.X24, Is.EqualTo(_unicornEmu.X[24])); Assert.That(_thread.ThreadState.X25, Is.EqualTo(_unicornEmu.X[25])); Assert.That(_thread.ThreadState.X26, Is.EqualTo(_unicornEmu.X[26])); Assert.That(_thread.ThreadState.X27, Is.EqualTo(_unicornEmu.X[27])); Assert.That(_thread.ThreadState.X28, Is.EqualTo(_unicornEmu.X[28])); Assert.That(_thread.ThreadState.X29, Is.EqualTo(_unicornEmu.X[29])); Assert.That(_thread.ThreadState.X30, Is.EqualTo(_unicornEmu.X[30])); Assert.That(_thread.ThreadState.X31, Is.EqualTo(_unicornEmu.SP)); if (fpTolerances == FpTolerances.None) { Assert.That(_thread.ThreadState.V0, Is.EqualTo(_unicornEmu.Q[0])); } else { ManageFpTolerances(fpTolerances); } Assert.That(_thread.ThreadState.V1, Is.EqualTo(_unicornEmu.Q[1])); Assert.That(_thread.ThreadState.V2, Is.EqualTo(_unicornEmu.Q[2])); Assert.That(_thread.ThreadState.V3, Is.EqualTo(_unicornEmu.Q[3])); Assert.That(_thread.ThreadState.V4, Is.EqualTo(_unicornEmu.Q[4])); Assert.That(_thread.ThreadState.V5, Is.EqualTo(_unicornEmu.Q[5])); Assert.That(_thread.ThreadState.V6, Is.EqualTo(_unicornEmu.Q[6])); Assert.That(_thread.ThreadState.V7, Is.EqualTo(_unicornEmu.Q[7])); Assert.That(_thread.ThreadState.V8, Is.EqualTo(_unicornEmu.Q[8])); Assert.That(_thread.ThreadState.V9, Is.EqualTo(_unicornEmu.Q[9])); Assert.That(_thread.ThreadState.V10, Is.EqualTo(_unicornEmu.Q[10])); Assert.That(_thread.ThreadState.V11, Is.EqualTo(_unicornEmu.Q[11])); Assert.That(_thread.ThreadState.V12, Is.EqualTo(_unicornEmu.Q[12])); Assert.That(_thread.ThreadState.V13, Is.EqualTo(_unicornEmu.Q[13])); Assert.That(_thread.ThreadState.V14, Is.EqualTo(_unicornEmu.Q[14])); Assert.That(_thread.ThreadState.V15, Is.EqualTo(_unicornEmu.Q[15])); Assert.That(_thread.ThreadState.V16, Is.EqualTo(_unicornEmu.Q[16])); Assert.That(_thread.ThreadState.V17, Is.EqualTo(_unicornEmu.Q[17])); Assert.That(_thread.ThreadState.V18, Is.EqualTo(_unicornEmu.Q[18])); Assert.That(_thread.ThreadState.V19, Is.EqualTo(_unicornEmu.Q[19])); Assert.That(_thread.ThreadState.V20, Is.EqualTo(_unicornEmu.Q[20])); Assert.That(_thread.ThreadState.V21, Is.EqualTo(_unicornEmu.Q[21])); Assert.That(_thread.ThreadState.V22, Is.EqualTo(_unicornEmu.Q[22])); Assert.That(_thread.ThreadState.V23, Is.EqualTo(_unicornEmu.Q[23])); Assert.That(_thread.ThreadState.V24, Is.EqualTo(_unicornEmu.Q[24])); Assert.That(_thread.ThreadState.V25, Is.EqualTo(_unicornEmu.Q[25])); Assert.That(_thread.ThreadState.V26, Is.EqualTo(_unicornEmu.Q[26])); Assert.That(_thread.ThreadState.V27, Is.EqualTo(_unicornEmu.Q[27])); Assert.That(_thread.ThreadState.V28, Is.EqualTo(_unicornEmu.Q[28])); Assert.That(_thread.ThreadState.V29, Is.EqualTo(_unicornEmu.Q[29])); Assert.That(_thread.ThreadState.V30, Is.EqualTo(_unicornEmu.Q[30])); Assert.That(_thread.ThreadState.V31, Is.EqualTo(_unicornEmu.Q[31])); Assert.That(_thread.ThreadState.Fpcr, Is.EqualTo(_unicornEmu.Fpcr)); Assert.That(_thread.ThreadState.Fpsr & (int)fpsrMask, Is.EqualTo(_unicornEmu.Fpsr & (int)fpsrMask)); Assert.That(_thread.ThreadState.Overflow, Is.EqualTo(_unicornEmu.OverflowFlag)); Assert.That(_thread.ThreadState.Carry, Is.EqualTo(_unicornEmu.CarryFlag)); Assert.That(_thread.ThreadState.Zero, Is.EqualTo(_unicornEmu.ZeroFlag)); Assert.That(_thread.ThreadState.Negative, Is.EqualTo(_unicornEmu.NegativeFlag)); } private void ManageFpSkips(FpSkips fpSkips) { if (fpSkips.HasFlag(FpSkips.IfNaNS)) { if (float.IsNaN(VectorExtractSingle(_unicornEmu.Q[0], (byte)0))) { Assert.Ignore("NaN test."); } } else if (fpSkips.HasFlag(FpSkips.IfNaND)) { if (double.IsNaN(VectorExtractDouble(_unicornEmu.Q[0], (byte)0))) { Assert.Ignore("NaN test."); } } if (fpSkips.HasFlag(FpSkips.IfUnderflow)) { if ((_unicornEmu.Fpsr & (int)Fpsr.Ufc) != 0) { Assert.Ignore("Underflow test."); } } if (fpSkips.HasFlag(FpSkips.IfOverflow)) { if ((_unicornEmu.Fpsr & (int)Fpsr.Ofc) != 0) { Assert.Ignore("Overflow test."); } } } private void ManageFpTolerances(FpTolerances fpTolerances) { if (!Is.EqualTo(_unicornEmu.Q[0]).ApplyTo(_thread.ThreadState.V0).IsSuccess) { if (fpTolerances == FpTolerances.UpToOneUlpsS) { if (IsNormalOrSubnormalS(VectorExtractSingle(_unicornEmu.Q[0], (byte)0)) && IsNormalOrSubnormalS(VectorExtractSingle(_thread.ThreadState.V0, (byte)0))) { Assert.That (VectorExtractSingle(_thread.ThreadState.V0, (byte)0), Is.EqualTo(VectorExtractSingle(_unicornEmu.Q[0], (byte)0)).Within(1).Ulps); Assert.That (VectorExtractSingle(_thread.ThreadState.V0, (byte)1), Is.EqualTo(VectorExtractSingle(_unicornEmu.Q[0], (byte)1)).Within(1).Ulps); Assert.That (VectorExtractSingle(_thread.ThreadState.V0, (byte)2), Is.EqualTo(VectorExtractSingle(_unicornEmu.Q[0], (byte)2)).Within(1).Ulps); Assert.That (VectorExtractSingle(_thread.ThreadState.V0, (byte)3), Is.EqualTo(VectorExtractSingle(_unicornEmu.Q[0], (byte)3)).Within(1).Ulps); Console.WriteLine(fpTolerances); } else { Assert.That(_thread.ThreadState.V0, Is.EqualTo(_unicornEmu.Q[0])); } } if (fpTolerances == FpTolerances.UpToOneUlpsD) { if (IsNormalOrSubnormalD(VectorExtractDouble(_unicornEmu.Q[0], (byte)0)) && IsNormalOrSubnormalD(VectorExtractDouble(_thread.ThreadState.V0, (byte)0))) { Assert.That (VectorExtractDouble(_thread.ThreadState.V0, (byte)0), Is.EqualTo(VectorExtractDouble(_unicornEmu.Q[0], (byte)0)).Within(1).Ulps); Assert.That (VectorExtractDouble(_thread.ThreadState.V0, (byte)1), Is.EqualTo(VectorExtractDouble(_unicornEmu.Q[0], (byte)1)).Within(1).Ulps); Console.WriteLine(fpTolerances); } else { Assert.That(_thread.ThreadState.V0, Is.EqualTo(_unicornEmu.Q[0])); } } } bool IsNormalOrSubnormalS(float f) => float.IsNormal(f) || float.IsSubnormal(f); bool IsNormalOrSubnormalD(double d) => double.IsNormal(d) || double.IsSubnormal(d); } protected static Vector128 MakeVectorE0(double e0) { if (!Sse2.IsSupported) { throw new PlatformNotSupportedException(); } return Sse.StaticCast(Sse2.SetVector128(0, BitConverter.DoubleToInt64Bits(e0))); } protected static Vector128 MakeVectorE0E1(double e0, double e1) { if (!Sse2.IsSupported) { throw new PlatformNotSupportedException(); } return Sse.StaticCast( Sse2.SetVector128(BitConverter.DoubleToInt64Bits(e1), BitConverter.DoubleToInt64Bits(e0))); } protected static Vector128 MakeVectorE1(double e1) { if (!Sse2.IsSupported) { throw new PlatformNotSupportedException(); } return Sse.StaticCast(Sse2.SetVector128(BitConverter.DoubleToInt64Bits(e1), 0)); } protected static float VectorExtractSingle(Vector128 vector, byte index) { if (!Sse41.IsSupported) { throw new PlatformNotSupportedException(); } int value = Sse41.Extract(Sse.StaticCast(vector), index); return BitConverter.Int32BitsToSingle(value); } protected static double VectorExtractDouble(Vector128 vector, byte index) { if (!Sse41.IsSupported) { throw new PlatformNotSupportedException(); } long value = Sse41.Extract(Sse.StaticCast(vector), index); return BitConverter.Int64BitsToDouble(value); } protected static Vector128 MakeVectorE0(ulong e0) { if (!Sse2.IsSupported) { throw new PlatformNotSupportedException(); } return Sse.StaticCast(Sse2.SetVector128(0, e0)); } protected static Vector128 MakeVectorE0E1(ulong e0, ulong e1) { if (!Sse2.IsSupported) { throw new PlatformNotSupportedException(); } return Sse.StaticCast(Sse2.SetVector128(e1, e0)); } protected static Vector128 MakeVectorE1(ulong e1) { if (!Sse2.IsSupported) { throw new PlatformNotSupportedException(); } return Sse.StaticCast(Sse2.SetVector128(e1, 0)); } protected static ulong GetVectorE0(Vector128 vector) { if (!Sse41.IsSupported) { throw new PlatformNotSupportedException(); } return Sse41.Extract(Sse.StaticCast(vector), (byte)0); } protected static ulong GetVectorE1(Vector128 vector) { if (!Sse41.IsSupported) { throw new PlatformNotSupportedException(); } return Sse41.Extract(Sse.StaticCast(vector), (byte)1); } protected static ushort GenNormalH() { uint rnd; do rnd = TestContext.CurrentContext.Random.NextUShort(); while (( rnd & 0x7C00u) == 0u || (~rnd & 0x7C00u) == 0u); return (ushort)rnd; } protected static ushort GenSubnormalH() { uint rnd; do rnd = TestContext.CurrentContext.Random.NextUShort(); while ((rnd & 0x03FFu) == 0u); return (ushort)(rnd & 0x83FFu); } protected static uint GenNormalS() { uint rnd; do rnd = TestContext.CurrentContext.Random.NextUInt(); while (( rnd & 0x7F800000u) == 0u || (~rnd & 0x7F800000u) == 0u); return rnd; } protected static uint GenSubnormalS() { uint rnd; do rnd = TestContext.CurrentContext.Random.NextUInt(); while ((rnd & 0x007FFFFFu) == 0u); return rnd & 0x807FFFFFu; } protected static ulong GenNormalD() { ulong rnd; do rnd = TestContext.CurrentContext.Random.NextULong(); while (( rnd & 0x7FF0000000000000ul) == 0ul || (~rnd & 0x7FF0000000000000ul) == 0ul); return rnd; } protected static ulong GenSubnormalD() { ulong rnd; do rnd = TestContext.CurrentContext.Random.NextULong(); while ((rnd & 0x000FFFFFFFFFFFFFul) == 0ul); return rnd & 0x800FFFFFFFFFFFFFul; } } }