using Ryujinx.Common;
using System;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
namespace Ryujinx.Memory
{
///
/// Represents a address space manager.
/// Supports virtual memory region mapping, address translation and read/write access to mapped regions.
///
public sealed class AddressSpaceManager : IVirtualMemoryManager
{
public const int PageBits = 12;
public const int PageSize = 1 << PageBits;
public const int PageMask = PageSize - 1;
private const int PtLevelBits = 9; // 9 * 4 + 12 = 48 (max address space size)
private const int PtLevelSize = 1 << PtLevelBits;
private const int PtLevelMask = PtLevelSize - 1;
private const ulong Unmapped = ulong.MaxValue;
///
/// Address space width in bits.
///
public int AddressSpaceBits { get; }
private readonly ulong _addressSpaceSize;
private readonly MemoryBlock _backingMemory;
private readonly ulong[][][][] _pageTable;
///
/// Creates a new instance of the memory manager.
///
/// Physical backing memory where virtual memory will be mapped to
/// Size of the address space
public AddressSpaceManager(MemoryBlock backingMemory, ulong addressSpaceSize)
{
ulong asSize = PageSize;
int asBits = PageBits;
while (asSize < addressSpaceSize)
{
asSize <<= 1;
asBits++;
}
AddressSpaceBits = asBits;
_addressSpaceSize = asSize;
_backingMemory = backingMemory;
_pageTable = new ulong[PtLevelSize][][][];
}
///
/// Maps a virtual memory range into a physical memory range.
///
///
/// Addresses and size must be page aligned.
///
/// Virtual memory address
/// Physical memory address
/// Size to be mapped
public void Map(ulong va, ulong pa, ulong size)
{
while (size != 0)
{
PtMap(va, pa);
va += PageSize;
pa += PageSize;
size -= PageSize;
}
}
///
/// Unmaps a previously mapped range of virtual memory.
///
/// Virtual address of the range to be unmapped
/// Size of the range to be unmapped
public void Unmap(ulong va, ulong size)
{
while (size != 0)
{
PtUnmap(va);
va += PageSize;
size -= PageSize;
}
}
///
/// Reads data from mapped memory.
///
/// Type of the data being read
/// Virtual address of the data in memory
/// The data
/// Throw for unhandled invalid or unmapped memory accesses
public T Read(ulong va) where T : unmanaged
{
return MemoryMarshal.Cast(GetSpan(va, Unsafe.SizeOf()))[0];
}
///
/// Reads data from mapped memory.
///
/// Virtual address of the data in memory
/// Span to store the data being read into
/// Throw for unhandled invalid or unmapped memory accesses
public void Read(ulong va, Span data)
{
ReadImpl(va, data);
}
///
/// Writes data to mapped memory.
///
/// Type of the data being written
/// Virtual address to write the data into
/// Data to be written
/// Throw for unhandled invalid or unmapped memory accesses
public void Write(ulong va, T value) where T : unmanaged
{
Write(va, MemoryMarshal.Cast(MemoryMarshal.CreateSpan(ref value, 1)));
}
///
/// Writes data to mapped memory.
///
/// Virtual address to write the data into
/// Data to be written
/// Throw for unhandled invalid or unmapped memory accesses
public void Write(ulong va, ReadOnlySpan data)
{
if (data.Length == 0)
{
return;
}
if (IsContiguousAndMapped(va, data.Length))
{
data.CopyTo(_backingMemory.GetSpan(GetPhysicalAddressInternal(va), data.Length));
}
else
{
int offset = 0, size;
if ((va & PageMask) != 0)
{
ulong pa = GetPhysicalAddressInternal(va);
size = Math.Min(data.Length, PageSize - (int)(va & PageMask));
data.Slice(0, size).CopyTo(_backingMemory.GetSpan(pa, size));
offset += size;
}
for (; offset < data.Length; offset += size)
{
ulong pa = GetPhysicalAddressInternal(va + (ulong)offset);
size = Math.Min(data.Length - offset, PageSize);
data.Slice(offset, size).CopyTo(_backingMemory.GetSpan(pa, size));
}
}
}
///
/// Gets a read-only span of data from mapped memory.
///
///
/// This may perform a allocation if the data is not contiguous in memory.
/// For this reason, the span is read-only, you can't modify the data.
///
/// Virtual address of the data
/// Size of the data
/// True if read tracking is triggered on the span
/// A read-only span of the data
/// Throw for unhandled invalid or unmapped memory accesses
public ReadOnlySpan GetSpan(ulong va, int size, bool tracked = false)
{
if (size == 0)
{
return ReadOnlySpan.Empty;
}
if (IsContiguousAndMapped(va, size))
{
return _backingMemory.GetSpan(GetPhysicalAddressInternal(va), size);
}
else
{
Span data = new byte[size];
ReadImpl(va, data);
return data;
}
}
///
/// Gets a region of memory that can be written to.
///
///
/// If the requested region is not contiguous in physical memory,
/// this will perform an allocation, and flush the data (writing it
/// back to the backing memory) on disposal.
///
/// Virtual address of the data
/// Size of the data
/// A writable region of memory containing the data
/// Throw for unhandled invalid or unmapped memory accesses
public WritableRegion GetWritableRegion(ulong va, int size)
{
if (size == 0)
{
return new WritableRegion(null, va, Memory.Empty);
}
if (IsContiguousAndMapped(va, size))
{
return new WritableRegion(null, va, _backingMemory.GetMemory(GetPhysicalAddressInternal(va), size));
}
else
{
Memory memory = new byte[size];
GetSpan(va, size).CopyTo(memory.Span);
return new WritableRegion(this, va, memory);
}
}
///
/// Gets a reference for the given type at the specified virtual memory address.
///
///
/// The data must be located at a contiguous memory region.
///
/// Type of the data to get the reference
/// Virtual address of the data
/// A reference to the data in memory
/// Throw if the specified memory region is not contiguous in physical memory
public ref T GetRef(ulong va) where T : unmanaged
{
if (!IsContiguous(va, Unsafe.SizeOf()))
{
ThrowMemoryNotContiguous();
}
return ref _backingMemory.GetRef(GetPhysicalAddressInternal(va));
}
private void ThrowMemoryNotContiguous() => throw new MemoryNotContiguousException();
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private bool IsContiguousAndMapped(ulong va, int size) => IsContiguous(va, size) && IsMapped(va);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private bool IsContiguous(ulong va, int size)
{
if (!ValidateAddress(va))
{
return false;
}
ulong endVa = (va + (ulong)size + PageMask) & ~(ulong)PageMask;
va &= ~(ulong)PageMask;
int pages = (int)((endVa - va) / PageSize);
for (int page = 0; page < pages - 1; page++)
{
if (!ValidateAddress(va + PageSize))
{
return false;
}
if (GetPhysicalAddressInternal(va) + PageSize != GetPhysicalAddressInternal(va + PageSize))
{
return false;
}
va += PageSize;
}
return true;
}
///
/// Gets the physical regions that make up the given virtual address region.
/// If any part of the virtual region is unmapped, null is returned.
///
/// Virtual address of the range
/// Size of the range
/// Array of physical regions
public (ulong address, ulong size)[] GetPhysicalRegions(ulong va, ulong size)
{
throw new NotImplementedException();
}
private void ReadImpl(ulong va, Span data)
{
if (data.Length == 0)
{
return;
}
int offset = 0, size;
if ((va & PageMask) != 0)
{
ulong pa = GetPhysicalAddressInternal(va);
size = Math.Min(data.Length, PageSize - (int)(va & PageMask));
_backingMemory.GetSpan(pa, size).CopyTo(data.Slice(0, size));
offset += size;
}
for (; offset < data.Length; offset += size)
{
ulong pa = GetPhysicalAddressInternal(va + (ulong)offset);
size = Math.Min(data.Length - offset, PageSize);
_backingMemory.GetSpan(pa, size).CopyTo(data.Slice(offset, size));
}
}
///
/// Checks if the page at a given virtual address is mapped.
///
/// Virtual address to check
/// True if the address is mapped, false otherwise
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool IsMapped(ulong va)
{
if (!ValidateAddress(va))
{
return false;
}
return PtRead(va) != Unmapped;
}
///
/// Checks if a memory range is mapped.
///
/// Virtual address of the range
/// Size of the range in bytes
/// True if the entire range is mapped, false otherwise
public bool IsRangeMapped(ulong va, ulong size)
{
if (size == 0UL)
{
return true;
}
ulong endVa = (va + size + PageMask) & ~(ulong)PageMask;
va &= ~(ulong)PageMask;
while (va < endVa)
{
if (!IsMapped(va))
{
return false;
}
va += PageSize;
}
return true;
}
private bool ValidateAddress(ulong va)
{
return va < _addressSpaceSize;
}
///
/// Performs address translation of the address inside a mapped memory range.
///
///
/// If the address is invalid or unmapped, -1 will be returned.
///
/// Virtual address to be translated
/// The physical address
public ulong GetPhysicalAddress(ulong va)
{
// We return -1L if the virtual address is invalid or unmapped.
if (!ValidateAddress(va) || !IsMapped(va))
{
return ulong.MaxValue;
}
return GetPhysicalAddressInternal(va);
}
private ulong GetPhysicalAddressInternal(ulong va)
{
return PtRead(va) + (va & PageMask);
}
///
/// Reprotect a region of virtual memory for tracking. Sets software protection bits.
///
/// Virtual address base
/// Size of the region to protect
/// Memory protection to set
public void TrackingReprotect(ulong va, ulong size, MemoryPermission protection)
{
throw new NotImplementedException();
}
private ulong PtRead(ulong va)
{
int l3 = (int)(va >> PageBits) & PtLevelMask;
int l2 = (int)(va >> (PageBits + PtLevelBits)) & PtLevelMask;
int l1 = (int)(va >> (PageBits + PtLevelBits * 2)) & PtLevelMask;
int l0 = (int)(va >> (PageBits + PtLevelBits * 3)) & PtLevelMask;
if (_pageTable[l0] == null)
{
return Unmapped;
}
if (_pageTable[l0][l1] == null)
{
return Unmapped;
}
if (_pageTable[l0][l1][l2] == null)
{
return Unmapped;
}
return _pageTable[l0][l1][l2][l3];
}
private void PtMap(ulong va, ulong value)
{
int l3 = (int)(va >> PageBits) & PtLevelMask;
int l2 = (int)(va >> (PageBits + PtLevelBits)) & PtLevelMask;
int l1 = (int)(va >> (PageBits + PtLevelBits * 2)) & PtLevelMask;
int l0 = (int)(va >> (PageBits + PtLevelBits * 3)) & PtLevelMask;
if (_pageTable[l0] == null)
{
_pageTable[l0] = new ulong[PtLevelSize][][];
}
if (_pageTable[l0][l1] == null)
{
_pageTable[l0][l1] = new ulong[PtLevelSize][];
}
if (_pageTable[l0][l1][l2] == null)
{
_pageTable[l0][l1][l2] = new ulong[PtLevelSize];
for (int i = 0; i < _pageTable[l0][l1][l2].Length; i++)
{
_pageTable[l0][l1][l2][i] = Unmapped;
}
}
_pageTable[l0][l1][l2][l3] = value;
}
private void PtUnmap(ulong va)
{
int l3 = (int)(va >> PageBits) & PtLevelMask;
int l2 = (int)(va >> (PageBits + PtLevelBits)) & PtLevelMask;
int l1 = (int)(va >> (PageBits + PtLevelBits * 2)) & PtLevelMask;
int l0 = (int)(va >> (PageBits + PtLevelBits * 3)) & PtLevelMask;
if (_pageTable[l0] == null)
{
return;
}
if (_pageTable[l0][l1] == null)
{
return;
}
if (_pageTable[l0][l1][l2] == null)
{
return;
}
_pageTable[l0][l1][l2][l3] = Unmapped;
bool empty = true;
for (int i = 0; i < _pageTable[l0][l1][l2].Length; i++)
{
empty &= (_pageTable[l0][l1][l2][i] == Unmapped);
}
if (empty)
{
_pageTable[l0][l1][l2] = null;
RemoveIfAllNull(l0, l1);
}
}
private void RemoveIfAllNull(int l0, int l1)
{
bool empty = true;
for (int i = 0; i < _pageTable[l0][l1].Length; i++)
{
empty &= (_pageTable[l0][l1][i] == null);
}
if (empty)
{
_pageTable[l0][l1] = null;
RemoveIfAllNull(l0);
}
}
private void RemoveIfAllNull(int l0)
{
bool empty = true;
for (int i = 0; i < _pageTable[l0].Length; i++)
{
empty &= (_pageTable[l0][i] == null);
}
if (empty)
{
_pageTable[l0] = null;
}
}
}
}