using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics.CodeAnalysis;
namespace Ryujinx.Common.Collections
{
///
/// Dictionary that provides the ability for O(logN) Lookups for keys that exist in the Dictionary, and O(logN) lookups for keys immediately greater than or less than a specified key.
///
/// Key
/// Value
public class TreeDictionary : IDictionary where K : IComparable
{
private const bool Black = true;
private const bool Red = false;
private Node _root = null;
private int _count = 0;
public TreeDictionary() { }
#region Public Methods
///
/// Returns the value of the node whose key is , or the default value if no such node exists.
///
/// Key of the node value to get
/// Value associated w/
/// is null
public V Get(K key)
{
if (key == null)
{
throw new ArgumentNullException(nameof(key));
}
Node node = GetNode(key);
if (node == null)
{
return default;
}
return node.Value;
}
///
/// Adds a new node into the tree whose key is key and value is .
///
/// Note: Adding the same key multiple times will cause the value for that key to be overwritten.
///
/// Key of the node to add
/// Value of the node to add
/// or are null
public void Add(K key, V value)
{
if (key == null)
{
throw new ArgumentNullException(nameof(key));
}
if (null == value)
{
throw new ArgumentNullException(nameof(value));
}
Insert(key, value);
}
///
/// Removes the node whose key is from the tree.
///
/// Key of the node to remove
/// is null
public void Remove(K key)
{
if (key == null)
{
throw new ArgumentNullException(nameof(key));
}
if (Delete(key) != null)
{
_count--;
}
}
///
/// Returns the value whose key is equal to or immediately less than .
///
/// Key for which to find the floor value of
/// Key of node immediately less than
/// is null
public K Floor(K key)
{
Node node = FloorNode(key);
if (node != null)
{
return node.Key;
}
return default;
}
///
/// Returns the node whose key is equal to or immediately greater than .
///
/// Key for which to find the ceiling node of
/// Key of node immediately greater than
/// is null
public K Ceiling(K key)
{
Node node = CeilingNode(key);
if (node != null)
{
return node.Key;
}
return default;
}
///
/// Finds the value whose key is immediately greater than .
///
/// Key to find the successor of
/// Value
public K SuccessorOf(K key)
{
Node node = GetNode(key);
if (node != null)
{
Node successor = SuccessorOf(node);
return successor != null ? successor.Key : default;
}
return default;
}
///
/// Finds the value whose key is immediately less than .
///
/// Key to find the predecessor of
/// Value
public K PredecessorOf(K key)
{
Node node = GetNode(key);
if (node != null)
{
Node predecessor = PredecessorOf(node);
return predecessor != null ? predecessor.Key : default;
}
return default;
}
///
/// Adds all the nodes in the dictionary as key/value pairs into .
///
/// The key/value pairs will be added in Level Order.
///
/// List to add the tree pairs into
public List> AsLevelOrderList()
{
List> list = new List>();
Queue> nodes = new Queue>();
if (this._root != null)
{
nodes.Enqueue(this._root);
}
while (nodes.Count > 0)
{
Node node = nodes.Dequeue();
list.Add(new KeyValuePair(node.Key, node.Value));
if (node.Left != null)
{
nodes.Enqueue(node.Left);
}
if (node.Right != null)
{
nodes.Enqueue(node.Right);
}
}
return list;
}
///
/// Adds all the nodes in the dictionary into .
///
/// A list of all KeyValuePairs sorted by Key Order
public List> AsList()
{
List> list = new List>();
AddToList(_root, list);
return list;
}
#endregion
#region Private Methods (BST)
///
/// Adds all nodes that are children of or contained within into , in Key Order.
///
/// The node to search for nodes within
/// The list to add node to
private void AddToList(Node node, List> list)
{
if (node == null)
{
return;
}
AddToList(node.Left, list);
list.Add(new KeyValuePair(node.Key, node.Value));
AddToList(node.Right, list);
}
///
/// Retrieve the node reference whose key is , or null if no such node exists.
///
/// Key of the node to get
/// Node reference in the tree
/// is null
private Node GetNode(K key)
{
if (key == null)
{
throw new ArgumentNullException(nameof(key));
}
Node node = _root;
while (node != null)
{
int cmp = key.CompareTo(node.Key);
if (cmp < 0)
{
node = node.Left;
}
else if (cmp > 0)
{
node = node.Right;
}
else
{
return node;
}
}
return null;
}
///
/// Inserts a new node into the tree whose key is and value is .
///
/// Adding the same key multiple times will overwrite the previous value.
///
/// Key of the node to insert
/// Value of the node to insert
private void Insert(K key, V value)
{
Node newNode = BSTInsert(key, value);
RestoreBalanceAfterInsertion(newNode);
}
///
/// Insertion Mechanism for a Binary Search Tree (BST).
///
/// Iterates the tree starting from the root and inserts a new node where all children in the left subtree are less than , and all children in the right subtree are greater than .
///
/// Note: If a node whose key is already exists, it's value will be overwritten.
///
/// Key of the node to insert
/// Value of the node to insert
/// The inserted Node
private Node BSTInsert(K key, V value)
{
Node parent = null;
Node node = _root;
while (node != null)
{
parent = node;
int cmp = key.CompareTo(node.Key);
if (cmp < 0)
{
node = node.Left;
}
else if (cmp > 0)
{
node = node.Right;
}
else
{
node.Value = value;
return node;
}
}
Node newNode = new Node(key, value, parent);
if (newNode.Parent == null)
{
_root = newNode;
}
else if (key.CompareTo(parent.Key) < 0)
{
parent.Left = newNode;
}
else
{
parent.Right = newNode;
}
_count++;
return newNode;
}
///
/// Removes from the dictionary, if it exists.
///
/// Key of the node to delete
/// The deleted Node
private Node Delete(K key)
{
// O(1) Retrieval
Node nodeToDelete = GetNode(key);
if (nodeToDelete == null) return null;
Node replacementNode;
if (LeftOf(nodeToDelete) == null || RightOf(nodeToDelete) == null)
{
replacementNode = nodeToDelete;
}
else
{
replacementNode = PredecessorOf(nodeToDelete);
}
Node tmp = LeftOf(replacementNode) ?? RightOf(replacementNode);
if (tmp != null)
{
tmp.Parent = ParentOf(replacementNode);
}
if (ParentOf(replacementNode) == null)
{
_root = tmp;
}
else if (replacementNode == LeftOf(ParentOf(replacementNode)))
{
ParentOf(replacementNode).Left = tmp;
}
else
{
ParentOf(replacementNode).Right = tmp;
}
if (replacementNode != nodeToDelete)
{
nodeToDelete.Key = replacementNode.Key;
nodeToDelete.Value = replacementNode.Value;
}
if (tmp != null && ColorOf(replacementNode) == Black)
{
RestoreBalanceAfterRemoval(tmp);
}
return replacementNode;
}
///
/// Returns the node with the largest key where is considered the root node.
///
/// Root Node
/// Node with the maximum key in the tree of
private static Node Maximum(Node node)
{
Node tmp = node;
while (tmp.Right != null)
{
tmp = tmp.Right;
}
return tmp;
}
///
/// Returns the node with the smallest key where is considered the root node.
///
/// Root Node
/// Node with the minimum key in the tree of
/// is null
private static Node Minimum(Node node)
{
if (node == null)
{
throw new ArgumentNullException(nameof(node));
}
Node tmp = node;
while (tmp.Left != null)
{
tmp = tmp.Left;
}
return tmp;
}
///
/// Returns the node whose key immediately less than or equal to .
///
/// Key for which to find the floor node of
/// Node whose key is immediately less than or equal to , or null if no such node is found.
/// is null
private Node FloorNode(K key)
{
if (key == null)
{
throw new ArgumentNullException(nameof(key));
}
Node tmp = _root;
while (tmp != null)
{
int cmp = key.CompareTo(tmp.Key);
if (cmp > 0)
{
if (tmp.Right != null)
{
tmp = tmp.Right;
}
else
{
return tmp;
}
}
else if (cmp < 0)
{
if (tmp.Left != null)
{
tmp = tmp.Left;
}
else
{
Node parent = tmp.Parent;
Node ptr = tmp;
while (parent != null && ptr == parent.Left)
{
ptr = parent;
parent = parent.Parent;
}
return parent;
}
}
else
{
return tmp;
}
}
return null;
}
///
/// Returns the node whose key is immediately greater than or equal to than .
///
/// Key for which to find the ceiling node of
/// Node whose key is immediately greater than or equal to , or null if no such node is found.
/// is null
private Node CeilingNode(K key)
{
if (key == null)
{
throw new ArgumentNullException(nameof(key));
}
Node tmp = _root;
while (tmp != null)
{
int cmp = key.CompareTo(tmp.Key);
if (cmp < 0)
{
if (tmp.Left != null)
{
tmp = tmp.Left;
}
else
{
return tmp;
}
}
else if (cmp > 0)
{
if (tmp.Right != null)
{
tmp = tmp.Right;
}
else
{
Node parent = tmp.Parent;
Node ptr = tmp;
while (parent != null && ptr == parent.Right)
{
ptr = parent;
parent = parent.Parent;
}
return parent;
}
}
else
{
return tmp;
}
}
return null;
}
///
/// Finds the node with the key is immediately greater than .
///
/// Node to find the successor of
/// Successor of
private static Node SuccessorOf(Node node)
{
if (node.Right != null)
{
return Minimum(node.Right);
}
Node parent = node.Parent;
while (parent != null && node == parent.Right)
{
node = parent;
parent = parent.Parent;
}
return parent;
}
///
/// Finds the node whose key is immediately less than .
///
/// Node to find the predecessor of
/// Predecessor of
private static Node PredecessorOf(Node node)
{
if (node.Left != null)
{
return Maximum(node.Left);
}
Node parent = node.Parent;
while (parent != null && node == parent.Left)
{
node = parent;
parent = parent.Parent;
}
return parent;
}
#endregion
#region Private Methods (RBL)
private void RestoreBalanceAfterRemoval(Node balanceNode)
{
Node ptr = balanceNode;
while (ptr != _root && ColorOf(ptr) == Black)
{
if (ptr == LeftOf(ParentOf(ptr)))
{
Node sibling = RightOf(ParentOf(ptr));
if (ColorOf(sibling) == Red)
{
SetColor(sibling, Black);
SetColor(ParentOf(ptr), Red);
RotateLeft(ParentOf(ptr));
sibling = RightOf(ParentOf(ptr));
}
if (ColorOf(LeftOf(sibling)) == Black && ColorOf(RightOf(sibling)) == Black)
{
SetColor(sibling, Red);
ptr = ParentOf(ptr);
}
else
{
if (ColorOf(RightOf(sibling)) == Black)
{
SetColor(LeftOf(sibling), Black);
SetColor(sibling, Red);
RotateRight(sibling);
sibling = RightOf(ParentOf(ptr));
}
SetColor(sibling, ColorOf(ParentOf(ptr)));
SetColor(ParentOf(ptr), Black);
SetColor(RightOf(sibling), Black);
RotateLeft(ParentOf(ptr));
ptr = _root;
}
}
else
{
Node sibling = LeftOf(ParentOf(ptr));
if (ColorOf(sibling) == Red)
{
SetColor(sibling, Black);
SetColor(ParentOf(ptr), Red);
RotateRight(ParentOf(ptr));
sibling = LeftOf(ParentOf(ptr));
}
if (ColorOf(RightOf(sibling)) == Black && ColorOf(LeftOf(sibling)) == Black)
{
SetColor(sibling, Red);
ptr = ParentOf(ptr);
}
else
{
if (ColorOf(LeftOf(sibling)) == Black)
{
SetColor(RightOf(sibling), Black);
SetColor(sibling, Red);
RotateLeft(sibling);
sibling = LeftOf(ParentOf(ptr));
}
SetColor(sibling, ColorOf(ParentOf(ptr)));
SetColor(ParentOf(ptr), Black);
SetColor(LeftOf(sibling), Black);
RotateRight(ParentOf(ptr));
ptr = _root;
}
}
}
SetColor(ptr, Black);
}
private void RestoreBalanceAfterInsertion(Node balanceNode)
{
SetColor(balanceNode, Red);
while (balanceNode != null && balanceNode != _root && ColorOf(ParentOf(balanceNode)) == Red)
{
if (ParentOf(balanceNode) == LeftOf(ParentOf(ParentOf(balanceNode))))
{
Node sibling = RightOf(ParentOf(ParentOf(balanceNode)));
if (ColorOf(sibling) == Red)
{
SetColor(ParentOf(balanceNode), Black);
SetColor(sibling, Black);
SetColor(ParentOf(ParentOf(balanceNode)), Red);
balanceNode = ParentOf(ParentOf(balanceNode));
}
else
{
if (balanceNode == RightOf(ParentOf(balanceNode)))
{
balanceNode = ParentOf(balanceNode);
RotateLeft(balanceNode);
}
SetColor(ParentOf(balanceNode), Black);
SetColor(ParentOf(ParentOf(balanceNode)), Red);
RotateRight(ParentOf(ParentOf(balanceNode)));
}
}
else
{
Node sibling = LeftOf(ParentOf(ParentOf(balanceNode)));
if (ColorOf(sibling) == Red)
{
SetColor(ParentOf(balanceNode), Black);
SetColor(sibling, Black);
SetColor(ParentOf(ParentOf(balanceNode)), Red);
balanceNode = ParentOf(ParentOf(balanceNode));
}
else
{
if (balanceNode == LeftOf(ParentOf(balanceNode)))
{
balanceNode = ParentOf(balanceNode);
RotateRight(balanceNode);
}
SetColor(ParentOf(balanceNode), Black);
SetColor(ParentOf(ParentOf(balanceNode)), Red);
RotateLeft(ParentOf(ParentOf(balanceNode)));
}
}
}
SetColor(_root, Black);
}
private void RotateLeft(Node node)
{
if (node != null)
{
Node right = RightOf(node);
node.Right = LeftOf(right);
if (LeftOf(right) != null)
{
LeftOf(right).Parent = node;
}
right.Parent = ParentOf(node);
if (ParentOf(node) == null)
{
_root = right;
}
else if (node == LeftOf(ParentOf(node)))
{
ParentOf(node).Left = right;
}
else
{
ParentOf(node).Right = right;
}
right.Left = node;
node.Parent = right;
}
}
private void RotateRight(Node node)
{
if (node != null)
{
Node left = LeftOf(node);
node.Left = RightOf(left);
if (RightOf(left) != null)
{
RightOf(left).Parent = node;
}
left.Parent = node.Parent;
if (ParentOf(node) == null)
{
_root = left;
}
else if (node == RightOf(ParentOf(node)))
{
ParentOf(node).Right = left;
}
else
{
ParentOf(node).Left = left;
}
left.Right = node;
node.Parent = left;
}
}
#endregion
#region Safety-Methods
// These methods save memory by allowing us to forego sentinel nil nodes, as well as serve as protection against NullReferenceExceptions.
///
/// Returns the color of , or Black if it is null.
///
/// Node
/// The boolean color of , or black if null
private static bool ColorOf(Node node)
{
return node == null || node.Color;
}
///
/// Sets the color of node to .
///
/// This method does nothing if is null.
///
/// Node to set the color of
/// Color (Boolean)
private static void SetColor(Node node, bool color)
{
if (node != null)
{
node.Color = color;
}
}
///
/// This method returns the left node of , or null if is null.
///
/// Node to retrieve the left child from
/// Left child of
private static Node LeftOf(Node node)
{
return node?.Left;
}
///
/// This method returns the right node of , or null if is null.
///
/// Node to retrieve the right child from
/// Right child of
private static Node RightOf(Node node)
{
return node?.Right;
}
///
/// Returns the parent node of , or null if is null.
///
/// Node to retrieve the parent from
/// Parent of
private static Node ParentOf(Node node)
{
return node?.Parent;
}
#endregion
#region Interface Implementations
// Method descriptions are not provided as they are already included as part of the interface.
public bool ContainsKey(K key)
{
if (key == null)
{
throw new ArgumentNullException(nameof(key));
}
return GetNode(key) != null;
}
bool IDictionary.Remove(K key)
{
int count = _count;
Remove(key);
return count > _count;
}
public bool TryGetValue(K key, [MaybeNullWhen(false)] out V value)
{
if (null == key)
{
throw new ArgumentNullException(nameof(key));
}
Node node = GetNode(key);
value = node != null ? node.Value : default;
return node != null;
}
public void Add(KeyValuePair item)
{
if (item.Key == null)
{
throw new ArgumentNullException(nameof(item.Key));
}
Add(item.Key, item.Value);
}
public void Clear()
{
_root = null;
_count = 0;
}
public bool Contains(KeyValuePair item)
{
if (item.Key == null)
{
return false;
}
Node node = GetNode(item.Key);
if (node != null)
{
return node.Key.Equals(item.Key) && node.Value.Equals(item.Value);
}
return false;
}
public void CopyTo(KeyValuePair[] array, int arrayIndex)
{
if (arrayIndex < 0 || array.Length - arrayIndex < this.Count)
{
throw new ArgumentOutOfRangeException(nameof(arrayIndex));
}
SortedList list = GetKeyValues();
int offset = 0;
for (int i = arrayIndex; i < array.Length && offset < list.Count; i++)
{
array[i] = new KeyValuePair(list.Keys[i], list.Values[i]);
offset++;
}
}
public bool Remove(KeyValuePair item)
{
Node node = GetNode(item.Key);
if (node == null)
{
return false;
}
if (node.Value.Equals(item.Value))
{
int count = _count;
Remove(item.Key);
return count > _count;
}
return false;
}
public IEnumerator> GetEnumerator()
{
return GetKeyValues().GetEnumerator();
}
IEnumerator IEnumerable.GetEnumerator()
{
return GetKeyValues().GetEnumerator();
}
public int Count => _count;
public ICollection Keys => GetKeyValues().Keys;
public ICollection Values => GetKeyValues().Values;
public bool IsReadOnly => false;
public V this[K key]
{
get => Get(key);
set => Add(key, value);
}
#endregion
#region Private Interface Helper Methods
///
/// Returns a sorted list of all the node keys / values in the tree.
///
/// List of node keys
private SortedList GetKeyValues()
{
SortedList set = new SortedList();
Queue> queue = new Queue>();
if (_root != null)
{
queue.Enqueue(_root);
}
while (queue.Count > 0)
{
Node node = queue.Dequeue();
set.Add(node.Key, node.Value);
if (null != node.Left)
{
queue.Enqueue(node.Left);
}
if (null != node.Right)
{
queue.Enqueue(node.Right);
}
}
return set;
}
#endregion
}
///
/// Represents a node in the TreeDictionary which contains a key and value of generic type K and V, respectively.
///
/// Key of the node
/// Value of the node
internal class Node
{
internal bool Color = true;
internal Node Left = null;
internal Node Right = null;
internal Node Parent = null;
internal K Key;
internal V Value;
public Node(K key, V value, Node parent)
{
this.Key = key;
this.Value = value;
this.Parent = parent;
}
}
}