using Ryujinx.Graphics.Shader.IntermediateRepresentation; using Ryujinx.Graphics.Shader.Translation; using System; using System.Collections.Generic; using System.Numerics; namespace Ryujinx.Graphics.Shader.StructuredIr { static class StructuredProgram { public static StructuredProgramInfo MakeStructuredProgram(Function[] functions, ShaderConfig config) { StructuredProgramContext context = new StructuredProgramContext(config); for (int funcIndex = 0; funcIndex < functions.Length; funcIndex++) { Function function = functions[funcIndex]; BasicBlock[] blocks = function.Blocks; AggregateType returnType = function.ReturnsValue ? AggregateType.S32 : AggregateType.Void; AggregateType[] inArguments = new AggregateType[function.InArgumentsCount]; AggregateType[] outArguments = new AggregateType[function.OutArgumentsCount]; for (int i = 0; i < inArguments.Length; i++) { inArguments[i] = AggregateType.S32; } for (int i = 0; i < outArguments.Length; i++) { outArguments[i] = AggregateType.S32; } context.EnterFunction(blocks.Length, function.Name, returnType, inArguments, outArguments); PhiFunctions.Remove(blocks); for (int blkIndex = 0; blkIndex < blocks.Length; blkIndex++) { BasicBlock block = blocks[blkIndex]; context.EnterBlock(block); for (LinkedListNode opNode = block.Operations.First; opNode != null; opNode = opNode.Next) { Operation operation = (Operation)opNode.Value; if (IsBranchInst(operation.Inst)) { context.LeaveBlock(block, operation); } else { AddOperation(context, operation); } } } GotoElimination.Eliminate(context.GetGotos()); AstOptimizer.Optimize(context); context.LeaveFunction(); } if (config.TransformFeedbackEnabled && config.LastInVertexPipeline) { for (int tfbIndex = 0; tfbIndex < 4; tfbIndex++) { var locations = config.GpuAccessor.QueryTransformFeedbackVaryingLocations(tfbIndex); var stride = config.GpuAccessor.QueryTransformFeedbackStride(tfbIndex); for (int i = 0; i < locations.Length; i++) { byte location = locations[i]; if (location < 0xc0) { context.Info.TransformFeedbackOutputs[location] = new TransformFeedbackOutput(tfbIndex, i * 4, stride); } } } } return context.Info; } private static void AddOperation(StructuredProgramContext context, Operation operation) { Instruction inst = operation.Inst; if (inst == Instruction.LoadAttribute) { Operand src1 = operation.GetSource(0); Operand src2 = operation.GetSource(1); if (src1.Type == OperandType.Constant && src2.Type == OperandType.Constant) { int attrOffset = (src1.Value & AttributeConsts.Mask) + (src2.Value << 2); if ((src1.Value & AttributeConsts.LoadOutputMask) != 0) { context.Info.Outputs.Add(attrOffset); } else { context.Info.Inputs.Add(attrOffset); } } } bool vectorDest = IsVectorDestInst(inst); int sourcesCount = operation.SourcesCount; int outDestsCount = operation.DestsCount != 0 && !vectorDest ? operation.DestsCount - 1 : 0; IAstNode[] sources = new IAstNode[sourcesCount + outDestsCount]; for (int index = 0; index < operation.SourcesCount; index++) { sources[index] = context.GetOperandUse(operation.GetSource(index)); } for (int index = 0; index < outDestsCount; index++) { AstOperand oper = context.GetOperandDef(operation.GetDest(1 + index)); oper.VarType = InstructionInfo.GetSrcVarType(inst, sourcesCount + index); sources[sourcesCount + index] = oper; } AstTextureOperation GetAstTextureOperation(TextureOperation texOp) { return new AstTextureOperation( inst, texOp.Type, texOp.Format, texOp.Flags, texOp.CbufSlot, texOp.Handle, texOp.Index, sources); } int componentsCount = BitOperations.PopCount((uint)operation.Index); if (vectorDest && componentsCount > 1) { AggregateType destType = InstructionInfo.GetDestVarType(inst); IAstNode source; if (operation is TextureOperation texOp) { if (texOp.Inst == Instruction.ImageLoad) { destType = texOp.Format.GetComponentType(); } source = GetAstTextureOperation(texOp); } else { source = new AstOperation(inst, operation.Index, sources, operation.SourcesCount); } AggregateType destElemType = destType; switch (componentsCount) { case 2: destType |= AggregateType.Vector2; break; case 3: destType |= AggregateType.Vector3; break; case 4: destType |= AggregateType.Vector4; break; } AstOperand destVec = context.NewTemp(destType); context.AddNode(new AstAssignment(destVec, source)); for (int i = 0; i < operation.DestsCount; i++) { AstOperand dest = context.GetOperandDef(operation.GetDest(i)); AstOperand index = new AstOperand(OperandType.Constant, i); dest.VarType = destElemType; context.AddNode(new AstAssignment(dest, new AstOperation(Instruction.VectorExtract, new[] { destVec, index }, 2))); } } else if (operation.Dest != null) { AstOperand dest = context.GetOperandDef(operation.Dest); // If all the sources are bool, it's better to use short-circuiting // logical operations, rather than forcing a cast to int and doing // a bitwise operation with the value, as it is likely to be used as // a bool in the end. if (IsBitwiseInst(inst) && AreAllSourceTypesEqual(sources, AggregateType.Bool)) { inst = GetLogicalFromBitwiseInst(inst); } bool isCondSel = inst == Instruction.ConditionalSelect; bool isCopy = inst == Instruction.Copy; if (isCondSel || isCopy) { AggregateType type = GetVarTypeFromUses(operation.Dest); if (isCondSel && type == AggregateType.FP32) { inst |= Instruction.FP32; } dest.VarType = type; } else { dest.VarType = InstructionInfo.GetDestVarType(inst); } IAstNode source; if (operation is TextureOperation texOp) { if (texOp.Inst == Instruction.ImageLoad) { dest.VarType = texOp.Format.GetComponentType(); } source = GetAstTextureOperation(texOp); } else if (!isCopy) { source = new AstOperation(inst, operation.Index, sources, operation.SourcesCount); } else { source = sources[0]; } context.AddNode(new AstAssignment(dest, source)); } else if (operation.Inst == Instruction.Comment) { context.AddNode(new AstComment(((CommentNode)operation).Comment)); } else if (operation is TextureOperation texOp) { AstTextureOperation astTexOp = GetAstTextureOperation(texOp); context.AddNode(astTexOp); } else { context.AddNode(new AstOperation(inst, operation.Index, sources, operation.SourcesCount)); } // Those instructions needs to be emulated by using helper functions, // because they are NVIDIA specific. Those flags helps the backend to // decide which helper functions are needed on the final generated code. switch (operation.Inst) { case Instruction.AtomicMaxS32 | Instruction.MrShared: case Instruction.AtomicMinS32 | Instruction.MrShared: context.Info.HelperFunctionsMask |= HelperFunctionsMask.AtomicMinMaxS32Shared; break; case Instruction.AtomicMaxS32 | Instruction.MrStorage: case Instruction.AtomicMinS32 | Instruction.MrStorage: context.Info.HelperFunctionsMask |= HelperFunctionsMask.AtomicMinMaxS32Storage; break; case Instruction.MultiplyHighS32: context.Info.HelperFunctionsMask |= HelperFunctionsMask.MultiplyHighS32; break; case Instruction.MultiplyHighU32: context.Info.HelperFunctionsMask |= HelperFunctionsMask.MultiplyHighU32; break; case Instruction.Shuffle: context.Info.HelperFunctionsMask |= HelperFunctionsMask.Shuffle; break; case Instruction.ShuffleDown: context.Info.HelperFunctionsMask |= HelperFunctionsMask.ShuffleDown; break; case Instruction.ShuffleUp: context.Info.HelperFunctionsMask |= HelperFunctionsMask.ShuffleUp; break; case Instruction.ShuffleXor: context.Info.HelperFunctionsMask |= HelperFunctionsMask.ShuffleXor; break; case Instruction.StoreShared16: case Instruction.StoreShared8: context.Info.HelperFunctionsMask |= HelperFunctionsMask.StoreSharedSmallInt; break; case Instruction.StoreStorage16: case Instruction.StoreStorage8: context.Info.HelperFunctionsMask |= HelperFunctionsMask.StoreStorageSmallInt; break; case Instruction.SwizzleAdd: context.Info.HelperFunctionsMask |= HelperFunctionsMask.SwizzleAdd; break; case Instruction.FSIBegin: case Instruction.FSIEnd: context.Info.HelperFunctionsMask |= HelperFunctionsMask.FSI; break; } } private static AggregateType GetVarTypeFromUses(Operand dest) { HashSet visited = new HashSet(); Queue pending = new Queue(); bool Enqueue(Operand operand) { if (visited.Add(operand)) { pending.Enqueue(operand); return true; } return false; } Enqueue(dest); while (pending.TryDequeue(out Operand operand)) { foreach (INode useNode in operand.UseOps) { if (useNode is not Operation operation) { continue; } if (operation.Inst == Instruction.Copy) { if (operation.Dest.Type == OperandType.LocalVariable) { if (Enqueue(operation.Dest)) { break; } } else { return OperandInfo.GetVarType(operation.Dest.Type); } } else { for (int index = 0; index < operation.SourcesCount; index++) { if (operation.GetSource(index) == operand) { return InstructionInfo.GetSrcVarType(operation.Inst, index); } } } } } return AggregateType.S32; } private static bool AreAllSourceTypesEqual(IAstNode[] sources, AggregateType type) { foreach (IAstNode node in sources) { if (node is not AstOperand operand) { return false; } if (operand.VarType != type) { return false; } } return true; } private static bool IsVectorDestInst(Instruction inst) { return inst switch { Instruction.ImageLoad or Instruction.TextureSample => true, _ => false }; } private static bool IsBranchInst(Instruction inst) { return inst switch { Instruction.Branch or Instruction.BranchIfFalse or Instruction.BranchIfTrue => true, _ => false }; } private static bool IsBitwiseInst(Instruction inst) { return inst switch { Instruction.BitwiseAnd or Instruction.BitwiseExclusiveOr or Instruction.BitwiseNot or Instruction.BitwiseOr => true, _ => false }; } private static Instruction GetLogicalFromBitwiseInst(Instruction inst) { return inst switch { Instruction.BitwiseAnd => Instruction.LogicalAnd, Instruction.BitwiseExclusiveOr => Instruction.LogicalExclusiveOr, Instruction.BitwiseNot => Instruction.LogicalNot, Instruction.BitwiseOr => Instruction.LogicalOr, _ => throw new ArgumentException($"Unexpected instruction \"{inst}\".") }; } } }