using Ryujinx.Common; using System; using System.Buffers.Binary; using System.Runtime.InteropServices; namespace Ryujinx.Graphics.Texture { public static class ETC2Decoder { private const uint AlphaMask = 0xff000000u; private const int BlockWidth = 4; private const int BlockHeight = 4; private static readonly int[][] _etc1Lut = { new int[] { 2, 8, -2, -8 }, new int[] { 5, 17, -5, -17 }, new int[] { 9, 29, -9, -29 }, new int[] { 13, 42, -13, -42 }, new int[] { 18, 60, -18, -60 }, new int[] { 24, 80, -24, -80 }, new int[] { 33, 106, -33, -106 }, new int[] { 47, 183, -47, -183 } }; private static readonly int[] _etc2Lut = { 3, 6, 11, 16, 23, 32, 41, 64 }; private static readonly int[][] _etc2AlphaLut = { new int[] { -3, -6, -9, -15, 2, 5, 8, 14 }, new int[] { -3, -7, -10, -13, 2, 6, 9, 12 }, new int[] { -2, -5, -8, -13, 1, 4, 7, 12 }, new int[] { -2, -4, -6, -13, 1, 3, 5, 12 }, new int[] { -3, -6, -8, -12, 2, 5, 7, 11 }, new int[] { -3, -7, -9, -11, 2, 6, 8, 10 }, new int[] { -4, -7, -8, -11, 3, 6, 7, 10 }, new int[] { -3, -5, -8, -11, 2, 4, 7, 10 }, new int[] { -2, -6, -8, -10, 1, 5, 7, 9 }, new int[] { -2, -5, -8, -10, 1, 4, 7, 9 }, new int[] { -2, -4, -8, -10, 1, 3, 7, 9 }, new int[] { -2, -5, -7, -10, 1, 4, 6, 9 }, new int[] { -3, -4, -7, -10, 2, 3, 6, 9 }, new int[] { -1, -2, -3, -10, 0, 1, 2, 9 }, new int[] { -4, -6, -8, -9, 3, 5, 7, 8 }, new int[] { -3, -5, -7, -9, 2, 4, 6, 8 } }; public static byte[] DecodeRgb(ReadOnlySpan data, int width, int height, int depth, int levels, int layers) { ReadOnlySpan dataUlong = MemoryMarshal.Cast(data); int inputOffset = 0; byte[] output = new byte[CalculateOutputSize(width, height, depth, levels, layers)]; Span outputUint = MemoryMarshal.Cast(output); Span tile = stackalloc uint[BlockWidth * BlockHeight]; int imageBaseOOffs = 0; for (int l = 0; l < levels; l++) { int wInBlocks = BitUtils.DivRoundUp(width, BlockWidth); int hInBlocks = BitUtils.DivRoundUp(height, BlockHeight); for (int l2 = 0; l2 < layers; l2++) { for (int z = 0; z < depth; z++) { for (int y = 0; y < hInBlocks; y++) { int ty = y * BlockHeight; int bh = Math.Min(BlockHeight, height - ty); for (int x = 0; x < wInBlocks; x++) { int tx = x * BlockWidth; int bw = Math.Min(BlockWidth, width - tx); ulong colorBlock = dataUlong[inputOffset++]; DecodeBlock(tile, colorBlock); for (int py = 0; py < bh; py++) { int oOffsBase = imageBaseOOffs + ((ty + py) * width) + tx; for (int px = 0; px < bw; px++) { int oOffs = oOffsBase + px; outputUint[oOffs] = tile[py * BlockWidth + px] | AlphaMask; } } } } imageBaseOOffs += width * height; } } width = Math.Max(1, width >> 1); height = Math.Max(1, height >> 1); depth = Math.Max(1, depth >> 1); } return output; } public static byte[] DecodePta(ReadOnlySpan data, int width, int height, int depth, int levels, int layers) { ReadOnlySpan dataUlong = MemoryMarshal.Cast(data); int inputOffset = 0; byte[] output = new byte[CalculateOutputSize(width, height, depth, levels, layers)]; Span outputUint = MemoryMarshal.Cast(output); Span tile = stackalloc uint[BlockWidth * BlockHeight]; int imageBaseOOffs = 0; for (int l = 0; l < levels; l++) { int wInBlocks = BitUtils.DivRoundUp(width, BlockWidth); int hInBlocks = BitUtils.DivRoundUp(height, BlockHeight); for (int l2 = 0; l2 < layers; l2++) { for (int z = 0; z < depth; z++) { for (int y = 0; y < hInBlocks; y++) { int ty = y * BlockHeight; int bh = Math.Min(BlockHeight, height - ty); for (int x = 0; x < wInBlocks; x++) { int tx = x * BlockWidth; int bw = Math.Min(BlockWidth, width - tx); ulong colorBlock = dataUlong[inputOffset++]; DecodeBlockPta(tile, colorBlock); for (int py = 0; py < bh; py++) { int oOffsBase = imageBaseOOffs + ((ty + py) * width) + tx; tile.Slice(py * BlockWidth, bw).CopyTo(outputUint.Slice(oOffsBase, bw)); } } } imageBaseOOffs += width * height; } } width = Math.Max(1, width >> 1); height = Math.Max(1, height >> 1); depth = Math.Max(1, depth >> 1); } return output; } public static byte[] DecodeRgba(ReadOnlySpan data, int width, int height, int depth, int levels, int layers) { ReadOnlySpan dataUlong = MemoryMarshal.Cast(data); int inputOffset = 0; byte[] output = new byte[CalculateOutputSize(width, height, depth, levels, layers)]; Span outputUint = MemoryMarshal.Cast(output); Span tile = stackalloc uint[BlockWidth * BlockHeight]; int imageBaseOOffs = 0; for (int l = 0; l < levels; l++) { int wInBlocks = BitUtils.DivRoundUp(width, BlockWidth); int hInBlocks = BitUtils.DivRoundUp(height, BlockHeight); for (int l2 = 0; l2 < layers; l2++) { for (int z = 0; z < depth; z++) { for (int y = 0; y < hInBlocks; y++) { int ty = y * BlockHeight; int bh = Math.Min(BlockHeight, height - ty); for (int x = 0; x < wInBlocks; x++) { int tx = x * BlockWidth; int bw = Math.Min(BlockWidth, width - tx); ulong alphaBlock = dataUlong[inputOffset]; ulong colorBlock = dataUlong[inputOffset + 1]; inputOffset += 2; DecodeBlock(tile, colorBlock); byte alphaBase = (byte)alphaBlock; int[] alphaTable = _etc2AlphaLut[(alphaBlock >> 8) & 0xf]; int alphaMultiplier = (int)(alphaBlock >> 12) & 0xf; ulong alphaIndices = BinaryPrimitives.ReverseEndianness(alphaBlock); if (alphaMultiplier != 0) { for (int py = 0; py < bh; py++) { int oOffsBase = imageBaseOOffs + ((ty + py) * width) + tx; for (int px = 0; px < bw; px++) { int oOffs = oOffsBase + px; int alphaIndex = (int)((alphaIndices >> (((px * BlockHeight + py) ^ 0xf) * 3)) & 7); byte a = Saturate(alphaBase + alphaTable[alphaIndex] * alphaMultiplier); outputUint[oOffs] = tile[py * BlockWidth + px] | ((uint)a << 24); } } } else { uint a = (uint)alphaBase << 24; for (int py = 0; py < bh; py++) { int oOffsBase = imageBaseOOffs + ((ty + py) * width) + tx; for (int px = 0; px < bw; px++) { int oOffs = oOffsBase + px; outputUint[oOffs] = tile[py * BlockWidth + px] | a; } } } } } imageBaseOOffs += width * height; } } width = Math.Max(1, width >> 1); height = Math.Max(1, height >> 1); depth = Math.Max(1, depth >> 1); } return output; } private static void DecodeBlock(Span tile, ulong block) { uint blockLow = (uint)(block >> 0); uint blockHigh = (uint)(block >> 32); uint r1, g1, b1; uint r2, g2, b2; bool differentialMode = (blockLow & 0x2000000) != 0; if (differentialMode) { (r1, g1, b1, r2, g2, b2) = UnpackRgb555DiffEndPoints(blockLow); if (r2 > 31) { DecodeBlock59T(tile, blockLow, blockHigh); } else if (g2 > 31) { DecodeBlock58H(tile, blockLow, blockHigh); } else if (b2 > 31) { DecodeBlock57P(tile, block); } else { r1 |= r1 >> 5; g1 |= g1 >> 5; b1 |= b1 >> 5; r2 = (r2 << 3) | (r2 >> 2); g2 = (g2 << 3) | (g2 >> 2); b2 = (b2 << 3) | (b2 >> 2); DecodeBlockETC1(tile, blockLow, blockHigh, r1, g1, b1, r2, g2, b2); } } else { r1 = (blockLow & 0x0000f0) >> 0; g1 = (blockLow & 0x00f000) >> 8; b1 = (blockLow & 0xf00000) >> 16; r2 = (blockLow & 0x00000f) << 4; g2 = (blockLow & 0x000f00) >> 4; b2 = (blockLow & 0x0f0000) >> 12; r1 |= r1 >> 4; g1 |= g1 >> 4; b1 |= b1 >> 4; r2 |= r2 >> 4; g2 |= g2 >> 4; b2 |= b2 >> 4; DecodeBlockETC1(tile, blockLow, blockHigh, r1, g1, b1, r2, g2, b2); } } private static void DecodeBlockPta(Span tile, ulong block) { uint blockLow = (uint)(block >> 0); uint blockHigh = (uint)(block >> 32); (uint r1, uint g1, uint b1, uint r2, uint g2, uint b2) = UnpackRgb555DiffEndPoints(blockLow); bool fullyOpaque = (blockLow & 0x2000000) != 0; if (fullyOpaque) { if (r2 > 31) { DecodeBlock59T(tile, blockLow, blockHigh); } else if (g2 > 31) { DecodeBlock58H(tile, blockLow, blockHigh); } else if (b2 > 31) { DecodeBlock57P(tile, block); } else { r1 |= r1 >> 5; g1 |= g1 >> 5; b1 |= b1 >> 5; r2 = (r2 << 3) | (r2 >> 2); g2 = (g2 << 3) | (g2 >> 2); b2 = (b2 << 3) | (b2 >> 2); DecodeBlockETC1(tile, blockLow, blockHigh, r1, g1, b1, r2, g2, b2); } for (int i = 0; i < tile.Length; i++) { tile[i] |= AlphaMask; } } else { if (r2 > 31) { DecodeBlock59T(tile, blockLow, blockHigh, AlphaMask); } else if (g2 > 31) { DecodeBlock58H(tile, blockLow, blockHigh, AlphaMask); } else if (b2 > 31) { DecodeBlock57P(tile, block); for (int i = 0; i < tile.Length; i++) { tile[i] |= AlphaMask; } } else { r1 |= r1 >> 5; g1 |= g1 >> 5; b1 |= b1 >> 5; r2 = (r2 << 3) | (r2 >> 2); g2 = (g2 << 3) | (g2 >> 2); b2 = (b2 << 3) | (b2 >> 2); DecodeBlockETC1(tile, blockLow, blockHigh, r1, g1, b1, r2, g2, b2, AlphaMask); } } } private static (uint, uint, uint, uint, uint, uint) UnpackRgb555DiffEndPoints(uint blockLow) { uint r1 = (blockLow & 0x0000f8) >> 0; uint g1 = (blockLow & 0x00f800) >> 8; uint b1 = (blockLow & 0xf80000) >> 16; uint r2 = (uint)((sbyte)(r1 >> 3) + ((sbyte)((blockLow & 0x000007) << 5) >> 5)); uint g2 = (uint)((sbyte)(g1 >> 3) + ((sbyte)((blockLow & 0x000700) >> 3) >> 5)); uint b2 = (uint)((sbyte)(b1 >> 3) + ((sbyte)((blockLow & 0x070000) >> 11) >> 5)); return (r1, g1, b1, r2, g2, b2); } private static void DecodeBlock59T(Span tile, uint blockLow, uint blockHigh, uint alphaMask = 0) { uint r1 = (blockLow & 3) | ((blockLow >> 1) & 0xc); uint g1 = (blockLow >> 12) & 0xf; uint b1 = (blockLow >> 8) & 0xf; uint r2 = (blockLow >> 20) & 0xf; uint g2 = (blockLow >> 16) & 0xf; uint b2 = (blockLow >> 28) & 0xf; r1 |= r1 << 4; g1 |= g1 << 4; b1 |= b1 << 4; r2 |= r2 << 4; g2 |= g2 << 4; b2 |= b2 << 4; int dist = _etc2Lut[((blockLow >> 24) & 1) | ((blockLow >> 25) & 6)]; Span palette = stackalloc uint[4]; palette[0] = Pack(r1, g1, b1); palette[1] = Pack(r2, g2, b2, dist); palette[2] = Pack(r2, g2, b2); palette[3] = Pack(r2, g2, b2, -dist); blockHigh = BinaryPrimitives.ReverseEndianness(blockHigh); for (int y = 0; y < BlockHeight; y++) { for (int x = 0; x < BlockWidth; x++) { int offset = (y * 4) + x; int index = (x * 4) + y; int paletteIndex = (int)((blockHigh >> index) & 1) | (int)((blockHigh >> (index + 15)) & 2); tile[offset] = palette[paletteIndex]; if (alphaMask != 0) { if (paletteIndex == 2) { tile[offset] = 0; } else { tile[offset] |= alphaMask; } } } } } private static void DecodeBlock58H(Span tile, uint blockLow, uint blockHigh, uint alphaMask = 0) { uint r1 = (blockLow >> 3) & 0xf; uint g1 = ((blockLow << 1) & 0xe) | ((blockLow >> 12) & 1); uint b1 = ((blockLow >> 23) & 1) | ((blockLow >> 7) & 6) | ((blockLow >> 8) & 8); uint r2 = (blockLow >> 19) & 0xf; uint g2 = ((blockLow >> 31) & 1) | ((blockLow >> 15) & 0xe); uint b2 = (blockLow >> 27) & 0xf; uint rgb1 = Pack4Be(r1, g1, b1); uint rgb2 = Pack4Be(r2, g2, b2); r1 |= r1 << 4; g1 |= g1 << 4; b1 |= b1 << 4; r2 |= r2 << 4; g2 |= g2 << 4; b2 |= b2 << 4; int dist = _etc2Lut[(rgb1 >= rgb2 ? 1u : 0u) | ((blockLow >> 23) & 2) | ((blockLow >> 24) & 4)]; Span palette = stackalloc uint[4]; palette[0] = Pack(r1, g1, b1, dist); palette[1] = Pack(r1, g1, b1, -dist); palette[2] = Pack(r2, g2, b2, dist); palette[3] = Pack(r2, g2, b2, -dist); blockHigh = BinaryPrimitives.ReverseEndianness(blockHigh); for (int y = 0; y < BlockHeight; y++) { for (int x = 0; x < BlockWidth; x++) { int offset = (y * 4) + x; int index = (x * 4) + y; int paletteIndex = (int)((blockHigh >> index) & 1) | (int)((blockHigh >> (index + 15)) & 2); tile[offset] = palette[paletteIndex]; if (alphaMask != 0) { if (paletteIndex == 2) { tile[offset] = 0; } else { tile[offset] |= alphaMask; } } } } } private static void DecodeBlock57P(Span tile, ulong block) { int r0 = (int)((block >> 1) & 0x3f); int g0 = (int)(((block >> 9) & 0x3f) | ((block & 1) << 6)); int b0 = (int)(((block >> 31) & 1) | ((block >> 15) & 6) | ((block >> 16) & 0x18) | ((block >> 3) & 0x20)); int rh = (int)(((block >> 24) & 1) | ((block >> 25) & 0x3e)); int gh = (int)((block >> 33) & 0x7f); int bh = (int)(((block >> 43) & 0x1f) | ((block >> 27) & 0x20)); int rv = (int)(((block >> 53) & 7) | ((block >> 37) & 0x38)); int gv = (int)(((block >> 62) & 3) | ((block >> 46) & 0x7c)); int bv = (int)((block >> 56) & 0x3f); r0 = (r0 << 2) | (r0 >> 4); g0 = (g0 << 1) | (g0 >> 6); b0 = (b0 << 2) | (b0 >> 4); rh = (rh << 2) | (rh >> 4); gh = (gh << 1) | (gh >> 6); bh = (bh << 2) | (bh >> 4); rv = (rv << 2) | (rv >> 4); gv = (gv << 1) | (gv >> 6); bv = (bv << 2) | (bv >> 4); for (int y = 0; y < BlockHeight; y++) { for (int x = 0; x < BlockWidth; x++) { int offset = y * BlockWidth + x; byte r = Saturate(((x * (rh - r0)) + (y * (rv - r0)) + (r0 * 4) + 2) >> 2); byte g = Saturate(((x * (gh - g0)) + (y * (gv - g0)) + (g0 * 4) + 2) >> 2); byte b = Saturate(((x * (bh - b0)) + (y * (bv - b0)) + (b0 * 4) + 2) >> 2); tile[offset] = Pack(r, g, b); } } } private static void DecodeBlockETC1( Span tile, uint blockLow, uint blockHigh, uint r1, uint g1, uint b1, uint r2, uint g2, uint b2, uint alphaMask = 0) { int[] table1 = _etc1Lut[(blockLow >> 29) & 7]; int[] table2 = _etc1Lut[(blockLow >> 26) & 7]; bool flip = (blockLow & 0x1000000) != 0; if (!flip) { for (int y = 0; y < BlockHeight; y++) { for (int x = 0; x < BlockWidth / 2; x++) { uint color1 = CalculatePixel(r1, g1, b1, x + 0, y, blockHigh, table1, alphaMask); uint color2 = CalculatePixel(r2, g2, b2, x + 2, y, blockHigh, table2, alphaMask); int offset1 = y * BlockWidth + x; int offset2 = y * BlockWidth + x + 2; tile[offset1] = color1; tile[offset2] = color2; } } } else { for (int y = 0; y < BlockHeight / 2; y++) { for (int x = 0; x < BlockWidth; x++) { uint color1 = CalculatePixel(r1, g1, b1, x, y + 0, blockHigh, table1, alphaMask); uint color2 = CalculatePixel(r2, g2, b2, x, y + 2, blockHigh, table2, alphaMask); int offset1 = (y * BlockWidth) + x; int offset2 = ((y + 2) * BlockWidth) + x; tile[offset1] = color1; tile[offset2] = color2; } } } } private static uint CalculatePixel(uint r, uint g, uint b, int x, int y, uint block, int[] table, uint alphaMask) { int index = x * BlockHeight + y; uint msb = block << 1; uint tableIndex = index < 8 ? ((block >> (index + 24)) & 1) + ((msb >> (index + 8)) & 2) : ((block >> (index + 8)) & 1) + ((msb >> (index - 8)) & 2); if (alphaMask != 0) { if (tableIndex == 0) { return Pack(r, g, b) | alphaMask; } else if (tableIndex == 2) { return 0; } else { return Pack(r, g, b, table[tableIndex]) | alphaMask; } } return Pack(r, g, b, table[tableIndex]); } private static uint Pack(uint r, uint g, uint b, int offset) { r = Saturate((int)(r + offset)); g = Saturate((int)(g + offset)); b = Saturate((int)(b + offset)); return Pack(r, g, b); } private static uint Pack(uint r, uint g, uint b) { return r | (g << 8) | (b << 16); } private static uint Pack4Be(uint r, uint g, uint b) { return (r << 8) | (g << 4) | b; } private static byte Saturate(int value) { return value > byte.MaxValue ? byte.MaxValue : value < byte.MinValue ? byte.MinValue : (byte)value; } private static int CalculateOutputSize(int width, int height, int depth, int levels, int layers) { int size = 0; for (int l = 0; l < levels; l++) { size += Math.Max(1, width >> l) * Math.Max(1, height >> l) * Math.Max(1, depth >> l) * layers * 4; } return size; } } }