using Ryujinx.Common;
using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Gpu.Memory;
using Ryujinx.Graphics.Gpu.State;
using System;
using System.Runtime.InteropServices;
namespace Ryujinx.Graphics.Gpu.Engine
{
partial class Methods
{
private const int NsToTicksFractionNumerator = 384;
private const int NsToTicksFractionDenominator = 625;
private readonly CounterCache _counterCache = new CounterCache();
///
/// Writes a GPU counter to guest memory.
///
/// Current GPU state
/// Method call argument
private void Report(GpuState state, int argument)
{
SemaphoreOperation op = (SemaphoreOperation)(argument & 3);
ReportCounterType type = (ReportCounterType)((argument >> 23) & 0x1f);
switch (op)
{
case SemaphoreOperation.Release: ReleaseSemaphore(state); break;
case SemaphoreOperation.Counter: ReportCounter(state, type); break;
}
}
///
/// Writes (or Releases) a GPU semaphore value to guest memory.
///
/// Current GPU state
private void ReleaseSemaphore(GpuState state)
{
var rs = state.Get(MethodOffset.ReportState);
_context.MemoryAccessor.Write(rs.Address.Pack(), rs.Payload);
_context.AdvanceSequence();
}
///
/// Packed GPU counter data (including GPU timestamp) in memory.
///
private struct CounterData
{
public ulong Counter;
public ulong Timestamp;
}
///
/// Writes a GPU counter to guest memory.
/// This also writes the current timestamp value.
///
/// Current GPU state
/// Counter to be written to memory
private void ReportCounter(GpuState state, ReportCounterType type)
{
CounterData counterData = new CounterData();
var rs = state.Get(MethodOffset.ReportState);
ulong gpuVa = rs.Address.Pack();
ulong ticks = ConvertNanosecondsToTicks((ulong)PerformanceCounter.ElapsedNanoseconds);
if (GraphicsConfig.FastGpuTime)
{
// Divide by some amount to report time as if operations were performed faster than they really are.
// This can prevent some games from switching to a lower resolution because rendering is too slow.
ticks /= 256;
}
ICounterEvent counter = null;
EventHandler resultHandler = (object evt, ulong result) =>
{
counterData.Counter = result;
counterData.Timestamp = ticks;
Span counterDataSpan = MemoryMarshal.CreateSpan(ref counterData, 1);
Span data = MemoryMarshal.Cast(counterDataSpan);
if (counter?.Invalid != true)
{
_context.MemoryAccessor.Write(gpuVa, data);
}
};
switch (type)
{
case ReportCounterType.Zero:
resultHandler(null, 0);
break;
case ReportCounterType.SamplesPassed:
counter = _context.Renderer.ReportCounter(CounterType.SamplesPassed, resultHandler);
break;
case ReportCounterType.PrimitivesGenerated:
counter = _context.Renderer.ReportCounter(CounterType.PrimitivesGenerated, resultHandler);
break;
case ReportCounterType.TransformFeedbackPrimitivesWritten:
counter = _context.Renderer.ReportCounter(CounterType.TransformFeedbackPrimitivesWritten, resultHandler);
break;
}
_counterCache.AddOrUpdate(gpuVa, counter);
}
///
/// Converts a nanoseconds timestamp value to Maxwell time ticks.
///
///
/// The frequency is 614400000 Hz.
///
/// Timestamp in nanoseconds
/// Maxwell ticks
private static ulong ConvertNanosecondsToTicks(ulong nanoseconds)
{
// We need to divide first to avoid overflows.
// We fix up the result later by calculating the difference and adding
// that to the result.
ulong divided = nanoseconds / NsToTicksFractionDenominator;
ulong rounded = divided * NsToTicksFractionDenominator;
ulong errorBias = (nanoseconds - rounded) * NsToTicksFractionNumerator / NsToTicksFractionDenominator;
return divided * NsToTicksFractionNumerator + errorBias;
}
}
}