using Ryujinx.Common; using Ryujinx.Graphics.Gal; using Ryujinx.Graphics.Memory; using Ryujinx.Graphics.Texture; using System; using System.Collections.Generic; namespace Ryujinx.Graphics { public class NvGpuEngine3d : INvGpuEngine { public int[] Registers { get; private set; } private NvGpu Gpu; private Dictionary Methods; private struct ConstBuffer { public bool Enabled; public long Position; public int Size; } private ConstBuffer[][] ConstBuffers; private List[] UploadedKeys; private int CurrentInstance = 0; public NvGpuEngine3d(NvGpu Gpu) { this.Gpu = Gpu; Registers = new int[0xe00]; Methods = new Dictionary(); void AddMethod(int Meth, int Count, int Stride, NvGpuMethod Method) { while (Count-- > 0) { Methods.Add(Meth, Method); Meth += Stride; } } AddMethod(0x585, 1, 1, VertexEndGl); AddMethod(0x674, 1, 1, ClearBuffers); AddMethod(0x6c3, 1, 1, QueryControl); AddMethod(0x8e4, 16, 1, CbData); AddMethod(0x904, 5, 8, CbBind); ConstBuffers = new ConstBuffer[6][]; for (int Index = 0; Index < ConstBuffers.Length; Index++) { ConstBuffers[Index] = new ConstBuffer[18]; } UploadedKeys = new List[(int)NvGpuBufferType.Count]; for (int i = 0; i < UploadedKeys.Length; i++) { UploadedKeys[i] = new List(); } //Ensure that all components are enabled by default. //FIXME: Is this correct? WriteRegister(NvGpuEngine3dReg.ColorMaskN, 0x1111); } public void CallMethod(NvGpuVmm Vmm, NvGpuPBEntry PBEntry) { if (Methods.TryGetValue(PBEntry.Method, out NvGpuMethod Method)) { Method(Vmm, PBEntry); } else { WriteRegister(PBEntry); } } public void ResetCache() { foreach (List Uploaded in UploadedKeys) { Uploaded.Clear(); } } private void VertexEndGl(NvGpuVmm Vmm, NvGpuPBEntry PBEntry) { LockCaches(); GalPipelineState State = new GalPipelineState(); SetFrameBuffer(State); SetFrontFace(State); SetCullFace(State); SetDepth(State); SetStencil(State); SetBlending(State); SetColorMask(State); SetPrimitiveRestart(State); for (int FbIndex = 0; FbIndex < 8; FbIndex++) { SetFrameBuffer(Vmm, FbIndex); } SetZeta(Vmm); SetRenderTargets(); long[] Keys = UploadShaders(Vmm); Gpu.Renderer.Shader.BindProgram(); UploadTextures(Vmm, State, Keys); UploadConstBuffers(Vmm, State, Keys); UploadVertexArrays(Vmm, State); DispatchRender(Vmm, State); UnlockCaches(); } private void LockCaches() { Gpu.Renderer.Buffer.LockCache(); Gpu.Renderer.Rasterizer.LockCaches(); Gpu.Renderer.Texture.LockCache(); } private void UnlockCaches() { Gpu.Renderer.Buffer.UnlockCache(); Gpu.Renderer.Rasterizer.UnlockCaches(); Gpu.Renderer.Texture.UnlockCache(); } private void ClearBuffers(NvGpuVmm Vmm, NvGpuPBEntry PBEntry) { int Arg0 = PBEntry.Arguments[0]; int Attachment = (Arg0 >> 6) & 0xf; GalClearBufferFlags Flags = (GalClearBufferFlags)(Arg0 & 0x3f); float Red = ReadRegisterFloat(NvGpuEngine3dReg.ClearNColor + 0); float Green = ReadRegisterFloat(NvGpuEngine3dReg.ClearNColor + 1); float Blue = ReadRegisterFloat(NvGpuEngine3dReg.ClearNColor + 2); float Alpha = ReadRegisterFloat(NvGpuEngine3dReg.ClearNColor + 3); float Depth = ReadRegisterFloat(NvGpuEngine3dReg.ClearDepth); int Stencil = ReadRegister(NvGpuEngine3dReg.ClearStencil); SetFrameBuffer(Vmm, Attachment); SetZeta(Vmm); SetRenderTargets(); Gpu.Renderer.RenderTarget.Bind(); Gpu.Renderer.Rasterizer.ClearBuffers(Flags, Attachment, Red, Green, Blue, Alpha, Depth, Stencil); Gpu.Renderer.Pipeline.ResetDepthMask(); Gpu.Renderer.Pipeline.ResetColorMask(Attachment); } private void SetFrameBuffer(NvGpuVmm Vmm, int FbIndex) { long VA = MakeInt64From2xInt32(NvGpuEngine3dReg.FrameBufferNAddress + FbIndex * 0x10); int SurfFormat = ReadRegister(NvGpuEngine3dReg.FrameBufferNFormat + FbIndex * 0x10); if (VA == 0 || SurfFormat == 0) { Gpu.Renderer.RenderTarget.UnbindColor(FbIndex); return; } long Key = Vmm.GetPhysicalAddress(VA); int Width = ReadRegister(NvGpuEngine3dReg.FrameBufferNWidth + FbIndex * 0x10); int Height = ReadRegister(NvGpuEngine3dReg.FrameBufferNHeight + FbIndex * 0x10); int BlockDim = ReadRegister(NvGpuEngine3dReg.FrameBufferNBlockDim + FbIndex * 0x10); int GobBlockHeight = 1 << ((BlockDim >> 4) & 7); GalMemoryLayout Layout = (GalMemoryLayout)((BlockDim >> 12) & 1); float TX = ReadRegisterFloat(NvGpuEngine3dReg.ViewportNTranslateX + FbIndex * 8); float TY = ReadRegisterFloat(NvGpuEngine3dReg.ViewportNTranslateY + FbIndex * 8); float SX = ReadRegisterFloat(NvGpuEngine3dReg.ViewportNScaleX + FbIndex * 8); float SY = ReadRegisterFloat(NvGpuEngine3dReg.ViewportNScaleY + FbIndex * 8); int VpX = (int)MathF.Max(0, TX - MathF.Abs(SX)); int VpY = (int)MathF.Max(0, TY - MathF.Abs(SY)); int VpW = (int)(TX + MathF.Abs(SX)) - VpX; int VpH = (int)(TY + MathF.Abs(SY)) - VpY; GalImageFormat Format = ImageUtils.ConvertSurface((GalSurfaceFormat)SurfFormat); GalImage Image = new GalImage(Width, Height, 1, GobBlockHeight, Layout, Format); Gpu.ResourceManager.SendColorBuffer(Vmm, Key, FbIndex, Image); Gpu.Renderer.RenderTarget.SetViewport(FbIndex, VpX, VpY, VpW, VpH); } private void SetFrameBuffer(GalPipelineState State) { State.FramebufferSrgb = ReadRegisterBool(NvGpuEngine3dReg.FrameBufferSrgb); State.FlipX = GetFlipSign(NvGpuEngine3dReg.ViewportNScaleX); State.FlipY = GetFlipSign(NvGpuEngine3dReg.ViewportNScaleY); } private void SetZeta(NvGpuVmm Vmm) { long VA = MakeInt64From2xInt32(NvGpuEngine3dReg.ZetaAddress); int ZetaFormat = ReadRegister(NvGpuEngine3dReg.ZetaFormat); int BlockDim = ReadRegister(NvGpuEngine3dReg.ZetaBlockDimensions); int GobBlockHeight = 1 << ((BlockDim >> 4) & 7); GalMemoryLayout Layout = (GalMemoryLayout)((BlockDim >> 12) & 1); //? bool ZetaEnable = ReadRegisterBool(NvGpuEngine3dReg.ZetaEnable); if (VA == 0 || ZetaFormat == 0 || !ZetaEnable) { Gpu.Renderer.RenderTarget.UnbindZeta(); return; } long Key = Vmm.GetPhysicalAddress(VA); int Width = ReadRegister(NvGpuEngine3dReg.ZetaHoriz); int Height = ReadRegister(NvGpuEngine3dReg.ZetaVert); GalImageFormat Format = ImageUtils.ConvertZeta((GalZetaFormat)ZetaFormat); GalImage Image = new GalImage(Width, Height, 1, GobBlockHeight, Layout, Format); Gpu.ResourceManager.SendZetaBuffer(Vmm, Key, Image); } private long[] UploadShaders(NvGpuVmm Vmm) { long[] Keys = new long[5]; long BasePosition = MakeInt64From2xInt32(NvGpuEngine3dReg.ShaderAddress); int Index = 1; int VpAControl = ReadRegister(NvGpuEngine3dReg.ShaderNControl); bool VpAEnable = (VpAControl & 1) != 0; if (VpAEnable) { //Note: The maxwell supports 2 vertex programs, usually //only VP B is used, but in some cases VP A is also used. //In this case, it seems to function as an extra vertex //shader stage. //The graphics abstraction layer has a special overload for this //case, which should merge the two shaders into one vertex shader. int VpAOffset = ReadRegister(NvGpuEngine3dReg.ShaderNOffset); int VpBOffset = ReadRegister(NvGpuEngine3dReg.ShaderNOffset + 0x10); long VpAPos = BasePosition + (uint)VpAOffset; long VpBPos = BasePosition + (uint)VpBOffset; Keys[(int)GalShaderType.Vertex] = VpBPos; Gpu.Renderer.Shader.Create(Vmm, VpAPos, VpBPos, GalShaderType.Vertex); Gpu.Renderer.Shader.Bind(VpBPos); Index = 2; } for (; Index < 6; Index++) { GalShaderType Type = GetTypeFromProgram(Index); int Control = ReadRegister(NvGpuEngine3dReg.ShaderNControl + Index * 0x10); int Offset = ReadRegister(NvGpuEngine3dReg.ShaderNOffset + Index * 0x10); //Note: Vertex Program (B) is always enabled. bool Enable = (Control & 1) != 0 || Index == 1; if (!Enable) { Gpu.Renderer.Shader.Unbind(Type); continue; } long Key = BasePosition + (uint)Offset; Keys[(int)Type] = Key; Gpu.Renderer.Shader.Create(Vmm, Key, Type); Gpu.Renderer.Shader.Bind(Key); } return Keys; } private static GalShaderType GetTypeFromProgram(int Program) { switch (Program) { case 0: case 1: return GalShaderType.Vertex; case 2: return GalShaderType.TessControl; case 3: return GalShaderType.TessEvaluation; case 4: return GalShaderType.Geometry; case 5: return GalShaderType.Fragment; } throw new ArgumentOutOfRangeException(nameof(Program)); } private void SetFrontFace(GalPipelineState State) { float SignX = GetFlipSign(NvGpuEngine3dReg.ViewportNScaleX); float SignY = GetFlipSign(NvGpuEngine3dReg.ViewportNScaleY); GalFrontFace FrontFace = (GalFrontFace)ReadRegister(NvGpuEngine3dReg.FrontFace); //Flipping breaks facing. Flipping front facing too fixes it if (SignX != SignY) { switch (FrontFace) { case GalFrontFace.CW: FrontFace = GalFrontFace.CCW; break; case GalFrontFace.CCW: FrontFace = GalFrontFace.CW; break; } } State.FrontFace = FrontFace; } private void SetCullFace(GalPipelineState State) { State.CullFaceEnabled = ReadRegisterBool(NvGpuEngine3dReg.CullFaceEnable); if (State.CullFaceEnabled) { State.CullFace = (GalCullFace)ReadRegister(NvGpuEngine3dReg.CullFace); } } private void SetDepth(GalPipelineState State) { State.DepthTestEnabled = ReadRegisterBool(NvGpuEngine3dReg.DepthTestEnable); State.DepthWriteEnabled = ReadRegisterBool(NvGpuEngine3dReg.DepthWriteEnable); if (State.DepthTestEnabled) { State.DepthFunc = (GalComparisonOp)ReadRegister(NvGpuEngine3dReg.DepthTestFunction); } State.DepthRangeNear = ReadRegisterFloat(NvGpuEngine3dReg.DepthRangeNNear); State.DepthRangeFar = ReadRegisterFloat(NvGpuEngine3dReg.DepthRangeNFar); } private void SetStencil(GalPipelineState State) { State.StencilTestEnabled = ReadRegisterBool(NvGpuEngine3dReg.StencilEnable); if (State.StencilTestEnabled) { State.StencilBackFuncFunc = (GalComparisonOp)ReadRegister(NvGpuEngine3dReg.StencilBackFuncFunc); State.StencilBackFuncRef = ReadRegister(NvGpuEngine3dReg.StencilBackFuncRef); State.StencilBackFuncMask = (uint)ReadRegister(NvGpuEngine3dReg.StencilBackFuncMask); State.StencilBackOpFail = (GalStencilOp)ReadRegister(NvGpuEngine3dReg.StencilBackOpFail); State.StencilBackOpZFail = (GalStencilOp)ReadRegister(NvGpuEngine3dReg.StencilBackOpZFail); State.StencilBackOpZPass = (GalStencilOp)ReadRegister(NvGpuEngine3dReg.StencilBackOpZPass); State.StencilBackMask = (uint)ReadRegister(NvGpuEngine3dReg.StencilBackMask); State.StencilFrontFuncFunc = (GalComparisonOp)ReadRegister(NvGpuEngine3dReg.StencilFrontFuncFunc); State.StencilFrontFuncRef = ReadRegister(NvGpuEngine3dReg.StencilFrontFuncRef); State.StencilFrontFuncMask = (uint)ReadRegister(NvGpuEngine3dReg.StencilFrontFuncMask); State.StencilFrontOpFail = (GalStencilOp)ReadRegister(NvGpuEngine3dReg.StencilFrontOpFail); State.StencilFrontOpZFail = (GalStencilOp)ReadRegister(NvGpuEngine3dReg.StencilFrontOpZFail); State.StencilFrontOpZPass = (GalStencilOp)ReadRegister(NvGpuEngine3dReg.StencilFrontOpZPass); State.StencilFrontMask = (uint)ReadRegister(NvGpuEngine3dReg.StencilFrontMask); } } private void SetBlending(GalPipelineState State) { //TODO: Support independent blend properly. State.BlendEnabled = ReadRegisterBool(NvGpuEngine3dReg.IBlendNEnable); if (State.BlendEnabled) { State.BlendSeparateAlpha = ReadRegisterBool(NvGpuEngine3dReg.IBlendNSeparateAlpha); State.BlendEquationRgb = (GalBlendEquation)ReadRegister(NvGpuEngine3dReg.IBlendNEquationRgb); State.BlendFuncSrcRgb = (GalBlendFactor)ReadRegister(NvGpuEngine3dReg.IBlendNFuncSrcRgb); State.BlendFuncDstRgb = (GalBlendFactor)ReadRegister(NvGpuEngine3dReg.IBlendNFuncDstRgb); State.BlendEquationAlpha = (GalBlendEquation)ReadRegister(NvGpuEngine3dReg.IBlendNEquationAlpha); State.BlendFuncSrcAlpha = (GalBlendFactor)ReadRegister(NvGpuEngine3dReg.IBlendNFuncSrcAlpha); State.BlendFuncDstAlpha = (GalBlendFactor)ReadRegister(NvGpuEngine3dReg.IBlendNFuncDstAlpha); } } private void SetColorMask(GalPipelineState State) { bool ColorMaskCommon = ReadRegisterBool(NvGpuEngine3dReg.ColorMaskCommon); State.ColorMaskCommon = ColorMaskCommon; for (int Index = 0; Index < GalPipelineState.RenderTargetsCount; Index++) { int ColorMask = ReadRegister(NvGpuEngine3dReg.ColorMaskN + (ColorMaskCommon ? 0 : Index)); State.ColorMasks[Index].Red = ((ColorMask >> 0) & 0xf) != 0; State.ColorMasks[Index].Green = ((ColorMask >> 4) & 0xf) != 0; State.ColorMasks[Index].Blue = ((ColorMask >> 8) & 0xf) != 0; State.ColorMasks[Index].Alpha = ((ColorMask >> 12) & 0xf) != 0; } } private void SetPrimitiveRestart(GalPipelineState State) { State.PrimitiveRestartEnabled = ReadRegisterBool(NvGpuEngine3dReg.PrimRestartEnable); if (State.PrimitiveRestartEnabled) { State.PrimitiveRestartIndex = (uint)ReadRegister(NvGpuEngine3dReg.PrimRestartIndex); } } private void SetRenderTargets() { //Commercial games do not seem to //bool SeparateFragData = ReadRegisterBool(NvGpuEngine3dReg.RTSeparateFragData); uint Control = (uint)(ReadRegister(NvGpuEngine3dReg.RTControl)); uint Count = Control & 0xf; if (Count > 0) { int[] Map = new int[Count]; for (int Index = 0; Index < Count; Index++) { int Shift = 4 + Index * 3; Map[Index] = (int)((Control >> Shift) & 7); } Gpu.Renderer.RenderTarget.SetMap(Map); } else { Gpu.Renderer.RenderTarget.SetMap(null); } } private void UploadTextures(NvGpuVmm Vmm, GalPipelineState State, long[] Keys) { long BaseShPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.ShaderAddress); int TextureCbIndex = ReadRegister(NvGpuEngine3dReg.TextureCbIndex); int TexIndex = 0; for (int Index = 0; Index < Keys.Length; Index++) { foreach (ShaderDeclInfo DeclInfo in Gpu.Renderer.Shader.GetTextureUsage(Keys[Index])) { long Position; if (DeclInfo.IsCb) { Position = ConstBuffers[Index][DeclInfo.Cbuf].Position; } else { Position = ConstBuffers[Index][TextureCbIndex].Position; } int TextureHandle = Vmm.ReadInt32(Position + DeclInfo.Index * 4); UploadTexture(Vmm, TexIndex, TextureHandle); TexIndex++; } } } private void UploadTexture(NvGpuVmm Vmm, int TexIndex, int TextureHandle) { if (TextureHandle == 0) { //TODO: Is this correct? //Some games like puyo puyo will have 0 handles. //It may be just normal behaviour or a bug caused by sync issues. //The game does initialize the value properly after through. return; } int TicIndex = (TextureHandle >> 0) & 0xfffff; int TscIndex = (TextureHandle >> 20) & 0xfff; long TicPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.TexHeaderPoolOffset); long TscPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.TexSamplerPoolOffset); TicPosition += TicIndex * 0x20; TscPosition += TscIndex * 0x20; GalImage Image = TextureFactory.MakeTexture(Vmm, TicPosition); GalTextureSampler Sampler = TextureFactory.MakeSampler(Gpu, Vmm, TscPosition); long Key = Vmm.ReadInt64(TicPosition + 4) & 0xffffffffffff; if (Image.Layout == GalMemoryLayout.BlockLinear) { Key &= ~0x1ffL; } else if (Image.Layout == GalMemoryLayout.Pitch) { Key &= ~0x1fL; } Key = Vmm.GetPhysicalAddress(Key); if (Key == -1) { //FIXME: Shouldn't ignore invalid addresses. return; } Gpu.ResourceManager.SendTexture(Vmm, Key, Image, TexIndex); Gpu.Renderer.Texture.SetSampler(Sampler); } private void UploadConstBuffers(NvGpuVmm Vmm, GalPipelineState State, long[] Keys) { for (int Stage = 0; Stage < Keys.Length; Stage++) { foreach (ShaderDeclInfo DeclInfo in Gpu.Renderer.Shader.GetConstBufferUsage(Keys[Stage])) { ConstBuffer Cb = ConstBuffers[Stage][DeclInfo.Cbuf]; if (!Cb.Enabled) { continue; } long Key = Vmm.GetPhysicalAddress(Cb.Position); if (QueryKeyUpload(Vmm, Key, Cb.Size, NvGpuBufferType.ConstBuffer)) { IntPtr Source = Vmm.GetHostAddress(Cb.Position, Cb.Size); Gpu.Renderer.Buffer.SetData(Key, Cb.Size, Source); } State.ConstBufferKeys[Stage][DeclInfo.Cbuf] = Key; } } } private void UploadVertexArrays(NvGpuVmm Vmm, GalPipelineState State) { long IbPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.IndexArrayAddress); long IboKey = Vmm.GetPhysicalAddress(IbPosition); int IndexEntryFmt = ReadRegister(NvGpuEngine3dReg.IndexArrayFormat); int IndexCount = ReadRegister(NvGpuEngine3dReg.IndexBatchCount); int PrimCtrl = ReadRegister(NvGpuEngine3dReg.VertexBeginGl); GalPrimitiveType PrimType = (GalPrimitiveType)(PrimCtrl & 0xffff); GalIndexFormat IndexFormat = (GalIndexFormat)IndexEntryFmt; int IndexEntrySize = 1 << IndexEntryFmt; if (IndexEntrySize > 4) { throw new InvalidOperationException(); } if (IndexCount != 0) { int IbSize = IndexCount * IndexEntrySize; bool IboCached = Gpu.Renderer.Rasterizer.IsIboCached(IboKey, (uint)IbSize); bool UsesLegacyQuads = PrimType == GalPrimitiveType.Quads || PrimType == GalPrimitiveType.QuadStrip; if (!IboCached || QueryKeyUpload(Vmm, IboKey, (uint)IbSize, NvGpuBufferType.Index)) { if (!UsesLegacyQuads) { IntPtr DataAddress = Vmm.GetHostAddress(IbPosition, IbSize); Gpu.Renderer.Rasterizer.CreateIbo(IboKey, IbSize, DataAddress); } else { byte[] Buffer = Vmm.ReadBytes(IbPosition, IbSize); if (PrimType == GalPrimitiveType.Quads) { Buffer = QuadHelper.ConvertIbQuadsToTris(Buffer, IndexEntrySize, IndexCount); } else /* if (PrimType == GalPrimitiveType.QuadStrip) */ { Buffer = QuadHelper.ConvertIbQuadStripToTris(Buffer, IndexEntrySize, IndexCount); } Gpu.Renderer.Rasterizer.CreateIbo(IboKey, IbSize, Buffer); } } if (!UsesLegacyQuads) { Gpu.Renderer.Rasterizer.SetIndexArray(IbSize, IndexFormat); } else { if (PrimType == GalPrimitiveType.Quads) { Gpu.Renderer.Rasterizer.SetIndexArray(QuadHelper.ConvertIbSizeQuadsToTris(IbSize), IndexFormat); } else /* if (PrimType == GalPrimitiveType.QuadStrip) */ { Gpu.Renderer.Rasterizer.SetIndexArray(QuadHelper.ConvertIbSizeQuadStripToTris(IbSize), IndexFormat); } } } List[] Attribs = new List[32]; for (int Attr = 0; Attr < 16; Attr++) { int Packed = ReadRegister(NvGpuEngine3dReg.VertexAttribNFormat + Attr); int ArrayIndex = Packed & 0x1f; if (Attribs[ArrayIndex] == null) { Attribs[ArrayIndex] = new List(); } long VertexPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.VertexArrayNAddress + ArrayIndex * 4); int Offset = (Packed >> 7) & 0x3fff; //Note: 16 is the maximum size of an attribute, //having a component size of 32-bits with 4 elements (a vec4). IntPtr Pointer = Vmm.GetHostAddress(VertexPosition + Offset, 16); Attribs[ArrayIndex].Add(new GalVertexAttrib( Attr, ((Packed >> 6) & 0x1) != 0, Offset, Pointer, (GalVertexAttribSize)((Packed >> 21) & 0x3f), (GalVertexAttribType)((Packed >> 27) & 0x7), ((Packed >> 31) & 0x1) != 0)); } State.VertexBindings = new GalVertexBinding[32]; for (int Index = 0; Index < 32; Index++) { if (Attribs[Index] == null) { continue; } int Control = ReadRegister(NvGpuEngine3dReg.VertexArrayNControl + Index * 4); bool Enable = (Control & 0x1000) != 0; if (!Enable) { continue; } long VertexPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.VertexArrayNAddress + Index * 4); long VertexEndPos = MakeInt64From2xInt32(NvGpuEngine3dReg.VertexArrayNEndAddr + Index * 2); int VertexDivisor = ReadRegister(NvGpuEngine3dReg.VertexArrayNDivisor + Index * 4); bool Instanced = ReadRegisterBool(NvGpuEngine3dReg.VertexArrayNInstance + Index); int Stride = Control & 0xfff; if (Instanced && VertexDivisor != 0) { VertexPosition += Stride * (CurrentInstance / VertexDivisor); } if (VertexPosition > VertexEndPos) { //Instance is invalid, ignore the draw call continue; } long VboKey = Vmm.GetPhysicalAddress(VertexPosition); long VbSize = (VertexEndPos - VertexPosition) + 1; bool VboCached = Gpu.Renderer.Rasterizer.IsVboCached(VboKey, VbSize); if (!VboCached || QueryKeyUpload(Vmm, VboKey, VbSize, NvGpuBufferType.Vertex)) { IntPtr DataAddress = Vmm.GetHostAddress(VertexPosition, VbSize); Gpu.Renderer.Rasterizer.CreateVbo(VboKey, (int)VbSize, DataAddress); } State.VertexBindings[Index].Enabled = true; State.VertexBindings[Index].Stride = Stride; State.VertexBindings[Index].VboKey = VboKey; State.VertexBindings[Index].Instanced = Instanced; State.VertexBindings[Index].Divisor = VertexDivisor; State.VertexBindings[Index].Attribs = Attribs[Index].ToArray(); } } private void DispatchRender(NvGpuVmm Vmm, GalPipelineState State) { int IndexCount = ReadRegister(NvGpuEngine3dReg.IndexBatchCount); int PrimCtrl = ReadRegister(NvGpuEngine3dReg.VertexBeginGl); GalPrimitiveType PrimType = (GalPrimitiveType)(PrimCtrl & 0xffff); bool InstanceNext = ((PrimCtrl >> 26) & 1) != 0; bool InstanceCont = ((PrimCtrl >> 27) & 1) != 0; if (InstanceNext && InstanceCont) { throw new InvalidOperationException("GPU tried to increase and reset instance count at the same time"); } if (InstanceNext) { CurrentInstance++; } else if (!InstanceCont) { CurrentInstance = 0; } State.Instance = CurrentInstance; Gpu.Renderer.Pipeline.Bind(State); Gpu.Renderer.RenderTarget.Bind(); if (IndexCount != 0) { int IndexEntryFmt = ReadRegister(NvGpuEngine3dReg.IndexArrayFormat); int IndexFirst = ReadRegister(NvGpuEngine3dReg.IndexBatchFirst); int VertexBase = ReadRegister(NvGpuEngine3dReg.VertexArrayElemBase); long IndexPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.IndexArrayAddress); long IboKey = Vmm.GetPhysicalAddress(IndexPosition); //Quad primitive types were deprecated on OpenGL 3.x, //they are converted to a triangles index buffer on IB creation, //so we should use the triangles type here too. if (PrimType == GalPrimitiveType.Quads || PrimType == GalPrimitiveType.QuadStrip) { PrimType = GalPrimitiveType.Triangles; //Note: We assume that index first points to the first //vertex of a quad, if it points to the middle of a //quad (First % 4 != 0 for Quads) then it will not work properly. if (PrimType == GalPrimitiveType.Quads) { IndexFirst = QuadHelper.ConvertIbSizeQuadsToTris(IndexFirst); } else /* if (PrimType == GalPrimitiveType.QuadStrip) */ { IndexFirst = QuadHelper.ConvertIbSizeQuadStripToTris(IndexFirst); } } Gpu.Renderer.Rasterizer.DrawElements(IboKey, IndexFirst, VertexBase, PrimType); } else { int VertexFirst = ReadRegister(NvGpuEngine3dReg.VertexArrayFirst); int VertexCount = ReadRegister(NvGpuEngine3dReg.VertexArrayCount); Gpu.Renderer.Rasterizer.DrawArrays(VertexFirst, VertexCount, PrimType); } //Is the GPU really clearing those registers after draw? WriteRegister(NvGpuEngine3dReg.IndexBatchFirst, 0); WriteRegister(NvGpuEngine3dReg.IndexBatchCount, 0); } private enum QueryMode { WriteSeq, Sync, WriteCounterAndTimestamp } private void QueryControl(NvGpuVmm Vmm, NvGpuPBEntry PBEntry) { WriteRegister(PBEntry); long Position = MakeInt64From2xInt32(NvGpuEngine3dReg.QueryAddress); int Seq = Registers[(int)NvGpuEngine3dReg.QuerySequence]; int Ctrl = Registers[(int)NvGpuEngine3dReg.QueryControl]; QueryMode Mode = (QueryMode)(Ctrl & 3); switch (Mode) { case QueryMode.WriteSeq: Vmm.WriteInt32(Position, Seq); break; case QueryMode.WriteCounterAndTimestamp: { //TODO: Implement counters. long Counter = 1; long Timestamp = PerformanceCounter.ElapsedMilliseconds; Timestamp = (long)(Timestamp * 615384.615385); Vmm.WriteInt64(Position + 0, Counter); Vmm.WriteInt64(Position + 8, Timestamp); break; } } } private void CbData(NvGpuVmm Vmm, NvGpuPBEntry PBEntry) { long Position = MakeInt64From2xInt32(NvGpuEngine3dReg.ConstBufferAddress); int Offset = ReadRegister(NvGpuEngine3dReg.ConstBufferOffset); foreach (int Arg in PBEntry.Arguments) { Vmm.WriteInt32(Position + Offset, Arg); Offset += 4; } WriteRegister(NvGpuEngine3dReg.ConstBufferOffset, Offset); UploadedKeys[(int)NvGpuBufferType.ConstBuffer].Clear(); } private void CbBind(NvGpuVmm Vmm, NvGpuPBEntry PBEntry) { int Stage = (PBEntry.Method - 0x904) >> 3; int Index = PBEntry.Arguments[0]; bool Enabled = (Index & 1) != 0; Index = (Index >> 4) & 0x1f; long Position = MakeInt64From2xInt32(NvGpuEngine3dReg.ConstBufferAddress); long CbKey = Vmm.GetPhysicalAddress(Position); int Size = ReadRegister(NvGpuEngine3dReg.ConstBufferSize); if (!Gpu.Renderer.Buffer.IsCached(CbKey, Size)) { Gpu.Renderer.Buffer.Create(CbKey, Size); } ConstBuffer Cb = ConstBuffers[Stage][Index]; if (Cb.Position != Position || Cb.Enabled != Enabled || Cb.Size != Size) { ConstBuffers[Stage][Index].Position = Position; ConstBuffers[Stage][Index].Enabled = Enabled; ConstBuffers[Stage][Index].Size = Size; } } private float GetFlipSign(NvGpuEngine3dReg Reg) { return MathF.Sign(ReadRegisterFloat(Reg)); } private long MakeInt64From2xInt32(NvGpuEngine3dReg Reg) { return (long)Registers[(int)Reg + 0] << 32 | (uint)Registers[(int)Reg + 1]; } private void WriteRegister(NvGpuPBEntry PBEntry) { int ArgsCount = PBEntry.Arguments.Count; if (ArgsCount > 0) { Registers[PBEntry.Method] = PBEntry.Arguments[ArgsCount - 1]; } } private int ReadRegister(NvGpuEngine3dReg Reg) { return Registers[(int)Reg]; } private float ReadRegisterFloat(NvGpuEngine3dReg Reg) { return BitConverter.Int32BitsToSingle(ReadRegister(Reg)); } private bool ReadRegisterBool(NvGpuEngine3dReg Reg) { return (ReadRegister(Reg) & 1) != 0; } private void WriteRegister(NvGpuEngine3dReg Reg, int Value) { Registers[(int)Reg] = Value; } private bool QueryKeyUpload(NvGpuVmm Vmm, long Key, long Size, NvGpuBufferType Type) { List Uploaded = UploadedKeys[(int)Type]; if (Uploaded.Contains(Key)) { return false; } Uploaded.Add(Key); return Vmm.IsRegionModified(Key, Size, Type); } } }