using ARMeilleure; using ARMeilleure.State; using ARMeilleure.Translation; using NUnit.Framework; using Ryujinx.Cpu.Jit; using Ryujinx.Memory; using Ryujinx.Tests.Unicorn; using System; using MemoryPermission = Ryujinx.Tests.Unicorn.MemoryPermission; namespace Ryujinx.Tests.Cpu { [TestFixture] public class CpuTest32 { protected static readonly uint Size = (uint)MemoryBlock.GetPageSize(); protected static uint CodeBaseAddress = Size; protected static uint DataBaseAddress = CodeBaseAddress + Size; private uint _currAddress; private MemoryBlock _ram; private MemoryManager _memory; private ExecutionContext _context; private CpuContext _cpuContext; private UnicornAArch32 _unicornEmu; private bool _usingMemory; [SetUp] public void Setup() { int pageBits = (int)ulong.Log2(Size); _ram = new MemoryBlock(Size * 2); _memory = new MemoryManager(_ram, 1ul << (pageBits + 4)); _memory.IncrementReferenceCount(); // Some tests depends on hardcoded address that were computed for 4KiB. // We change the layout on non 4KiB platforms to keep compat here. if (Size > 0x1000) { DataBaseAddress = 0; CodeBaseAddress = Size; } _currAddress = CodeBaseAddress; _memory.Map(CodeBaseAddress, 0, Size, MemoryMapFlags.Private); _memory.Map(DataBaseAddress, Size, Size, MemoryMapFlags.Private); _context = CpuContext.CreateExecutionContext(); _context.IsAarch32 = true; Translator.IsReadyForTranslation.Set(); _cpuContext = new CpuContext(_memory, for64Bit: false); // Prevent registering LCQ functions in the FunctionTable to avoid initializing and populating the table, // which improves test durations. Optimizations.AllowLcqInFunctionTable = false; Optimizations.UseUnmanagedDispatchLoop = false; _unicornEmu = new UnicornAArch32(); _unicornEmu.MemoryMap(CodeBaseAddress, Size, MemoryPermission.Read | MemoryPermission.Exec); _unicornEmu.MemoryMap(DataBaseAddress, Size, MemoryPermission.Read | MemoryPermission.Write); _unicornEmu.PC = CodeBaseAddress; } [TearDown] public void Teardown() { _unicornEmu.Dispose(); _unicornEmu = null; _memory.DecrementReferenceCount(); _context.Dispose(); _ram.Dispose(); _memory = null; _context = null; _cpuContext = null; _unicornEmu = null; _usingMemory = false; } protected void Reset() { Teardown(); Setup(); } protected void Opcode(uint opcode) { _memory.Write(_currAddress, opcode); _unicornEmu.MemoryWrite32(_currAddress, opcode); _currAddress += 4; } protected void ThumbOpcode(ushort opcode) { _memory.Write(_currAddress, opcode); _unicornEmu.MemoryWrite16(_currAddress, opcode); _currAddress += 2; } protected ExecutionContext GetContext() => _context; protected void SetContext(uint r0 = 0, uint r1 = 0, uint r2 = 0, uint r3 = 0, uint sp = 0, V128 v0 = default, V128 v1 = default, V128 v2 = default, V128 v3 = default, V128 v4 = default, V128 v5 = default, V128 v14 = default, V128 v15 = default, bool saturation = false, bool overflow = false, bool carry = false, bool zero = false, bool negative = false, int fpscr = 0, bool thumb = false) { _context.SetX(0, r0); _context.SetX(1, r1); _context.SetX(2, r2); _context.SetX(3, r3); _context.SetX(13, sp); _context.SetV(0, v0); _context.SetV(1, v1); _context.SetV(2, v2); _context.SetV(3, v3); _context.SetV(4, v4); _context.SetV(5, v5); _context.SetV(14, v14); _context.SetV(15, v15); _context.SetPstateFlag(PState.QFlag, saturation); _context.SetPstateFlag(PState.VFlag, overflow); _context.SetPstateFlag(PState.CFlag, carry); _context.SetPstateFlag(PState.ZFlag, zero); _context.SetPstateFlag(PState.NFlag, negative); _context.Fpscr = (FPSCR)fpscr; _context.SetPstateFlag(PState.TFlag, thumb); _unicornEmu.R[0] = r0; _unicornEmu.R[1] = r1; _unicornEmu.R[2] = r2; _unicornEmu.R[3] = r3; _unicornEmu.SP = sp; _unicornEmu.Q[0] = V128ToSimdValue(v0); _unicornEmu.Q[1] = V128ToSimdValue(v1); _unicornEmu.Q[2] = V128ToSimdValue(v2); _unicornEmu.Q[3] = V128ToSimdValue(v3); _unicornEmu.Q[4] = V128ToSimdValue(v4); _unicornEmu.Q[5] = V128ToSimdValue(v5); _unicornEmu.Q[14] = V128ToSimdValue(v14); _unicornEmu.Q[15] = V128ToSimdValue(v15); _unicornEmu.QFlag = saturation; _unicornEmu.OverflowFlag = overflow; _unicornEmu.CarryFlag = carry; _unicornEmu.ZeroFlag = zero; _unicornEmu.NegativeFlag = negative; _unicornEmu.Fpscr = fpscr; _unicornEmu.ThumbFlag = thumb; } protected void ExecuteOpcodes(bool runUnicorn = true) { _cpuContext.Execute(_context, CodeBaseAddress); if (runUnicorn) { _unicornEmu.RunForCount((_currAddress - CodeBaseAddress - 4) / 4); } } protected ExecutionContext SingleOpcode(uint opcode, uint r0 = 0, uint r1 = 0, uint r2 = 0, uint r3 = 0, uint sp = 0, V128 v0 = default, V128 v1 = default, V128 v2 = default, V128 v3 = default, V128 v4 = default, V128 v5 = default, V128 v14 = default, V128 v15 = default, bool saturation = false, bool overflow = false, bool carry = false, bool zero = false, bool negative = false, int fpscr = 0, bool runUnicorn = true) { Opcode(opcode); Opcode(0xE12FFF1E); // BX LR SetContext(r0, r1, r2, r3, sp, v0, v1, v2, v3, v4, v5, v14, v15, saturation, overflow, carry, zero, negative, fpscr); ExecuteOpcodes(runUnicorn); return GetContext(); } protected ExecutionContext SingleThumbOpcode(ushort opcode, uint r0 = 0, uint r1 = 0, uint r2 = 0, uint r3 = 0, uint sp = 0, bool saturation = false, bool overflow = false, bool carry = false, bool zero = false, bool negative = false, int fpscr = 0, bool runUnicorn = true) { ThumbOpcode(opcode); ThumbOpcode(0x4770); // BX LR SetContext(r0, r1, r2, r3, sp, default, default, default, default, default, default, default, default, saturation, overflow, carry, zero, negative, fpscr, thumb: true); ExecuteOpcodes(runUnicorn); return GetContext(); } public void RunPrecomputedTestCase(PrecomputedThumbTestCase test) { foreach (ushort instruction in test.Instructions) { ThumbOpcode(instruction); } for (int i = 0; i < 15; i++) { GetContext().SetX(i, test.StartRegs[i]); } uint startCpsr = test.StartRegs[15]; for (int i = 0; i < 32; i++) { GetContext().SetPstateFlag((PState)i, (startCpsr & (1u << i)) != 0); } ExecuteOpcodes(runUnicorn: false); for (int i = 0; i < 15; i++) { Assert.That(GetContext().GetX(i), Is.EqualTo(test.FinalRegs[i])); } uint finalCpsr = test.FinalRegs[15]; Assert.That(GetContext().Pstate, Is.EqualTo(finalCpsr)); } public void RunPrecomputedTestCase(PrecomputedMemoryThumbTestCase test) { byte[] testMem = new byte[Size]; for (ulong i = 0; i < Size; i += 2) { testMem[i + 0] = (byte)((i + DataBaseAddress) >> 0); testMem[i + 1] = (byte)((i + DataBaseAddress) >> 8); } SetWorkingMemory(0, testMem); RunPrecomputedTestCase(new PrecomputedThumbTestCase(){ Instructions = test.Instructions, StartRegs = test.StartRegs, FinalRegs = test.FinalRegs, }); foreach (var delta in test.MemoryDelta) { testMem[delta.Address - DataBaseAddress + 0] = (byte)(delta.Value >> 0); testMem[delta.Address - DataBaseAddress + 1] = (byte)(delta.Value >> 8); } byte[] mem = _memory.GetSpan(DataBaseAddress, (int)Size).ToArray(); Assert.That(mem, Is.EqualTo(testMem), "testmem"); } protected void SetWorkingMemory(uint offset, byte[] data) { _memory.Write(DataBaseAddress + offset, data); _unicornEmu.MemoryWrite(DataBaseAddress + offset, data); _usingMemory = true; // When true, CompareAgainstUnicorn checks the working memory for equality too. } /// Rounding Mode control field. public enum RMode { /// Round to Nearest mode. Rn, /// Round towards Plus Infinity mode. Rp, /// Round towards Minus Infinity mode. Rm, /// Round towards Zero mode. Rz }; /// Floating-point Control Register. protected enum Fpcr { /// Rounding Mode control field. RMode = 22, /// Flush-to-zero mode control bit. Fz = 24, /// Default NaN mode control bit. Dn = 25, /// Alternative half-precision control bit. Ahp = 26 } /// Floating-point Status Register. [Flags] protected enum Fpsr { None = 0, /// Invalid Operation cumulative floating-point exception bit. Ioc = 1 << 0, /// Divide by Zero cumulative floating-point exception bit. Dzc = 1 << 1, /// Overflow cumulative floating-point exception bit. Ofc = 1 << 2, /// Underflow cumulative floating-point exception bit. Ufc = 1 << 3, /// Inexact cumulative floating-point exception bit. Ixc = 1 << 4, /// Input Denormal cumulative floating-point exception bit. Idc = 1 << 7, /// Cumulative saturation bit. Qc = 1 << 27, /// NZCV flags. Nzcv = (1 << 31) | (1 << 30) | (1 << 29) | (1 << 28) } [Flags] protected enum FpSkips { None = 0, IfNaNS = 1, IfNaND = 2, IfUnderflow = 4, IfOverflow = 8 } protected enum FpTolerances { None, UpToOneUlpsS, UpToOneUlpsD } protected void CompareAgainstUnicorn( Fpsr fpsrMask = Fpsr.None, FpSkips fpSkips = FpSkips.None, FpTolerances fpTolerances = FpTolerances.None) { if (fpSkips != FpSkips.None) { ManageFpSkips(fpSkips); } Assert.That(_context.GetX(0), Is.EqualTo(_unicornEmu.R[0]), "R0"); Assert.That(_context.GetX(1), Is.EqualTo(_unicornEmu.R[1]), "R1"); Assert.That(_context.GetX(2), Is.EqualTo(_unicornEmu.R[2]), "R2"); Assert.That(_context.GetX(3), Is.EqualTo(_unicornEmu.R[3]), "R3"); Assert.That(_context.GetX(4), Is.EqualTo(_unicornEmu.R[4])); Assert.That(_context.GetX(5), Is.EqualTo(_unicornEmu.R[5])); Assert.That(_context.GetX(6), Is.EqualTo(_unicornEmu.R[6])); Assert.That(_context.GetX(7), Is.EqualTo(_unicornEmu.R[7])); Assert.That(_context.GetX(8), Is.EqualTo(_unicornEmu.R[8])); Assert.That(_context.GetX(9), Is.EqualTo(_unicornEmu.R[9])); Assert.That(_context.GetX(10), Is.EqualTo(_unicornEmu.R[10])); Assert.That(_context.GetX(11), Is.EqualTo(_unicornEmu.R[11])); Assert.That(_context.GetX(12), Is.EqualTo(_unicornEmu.R[12])); Assert.That(_context.GetX(13), Is.EqualTo(_unicornEmu.SP), "SP"); Assert.That(_context.GetX(14), Is.EqualTo(_unicornEmu.R[14])); if (fpTolerances == FpTolerances.None) { Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0]), "V0"); } else { ManageFpTolerances(fpTolerances); } Assert.That(V128ToSimdValue(_context.GetV(1)), Is.EqualTo(_unicornEmu.Q[1]), "V1"); Assert.That(V128ToSimdValue(_context.GetV(2)), Is.EqualTo(_unicornEmu.Q[2]), "V2"); Assert.That(V128ToSimdValue(_context.GetV(3)), Is.EqualTo(_unicornEmu.Q[3]), "V3"); Assert.That(V128ToSimdValue(_context.GetV(4)), Is.EqualTo(_unicornEmu.Q[4]), "V4"); Assert.That(V128ToSimdValue(_context.GetV(5)), Is.EqualTo(_unicornEmu.Q[5]), "V5"); Assert.That(V128ToSimdValue(_context.GetV(6)), Is.EqualTo(_unicornEmu.Q[6])); Assert.That(V128ToSimdValue(_context.GetV(7)), Is.EqualTo(_unicornEmu.Q[7])); Assert.That(V128ToSimdValue(_context.GetV(8)), Is.EqualTo(_unicornEmu.Q[8])); Assert.That(V128ToSimdValue(_context.GetV(9)), Is.EqualTo(_unicornEmu.Q[9])); Assert.That(V128ToSimdValue(_context.GetV(10)), Is.EqualTo(_unicornEmu.Q[10])); Assert.That(V128ToSimdValue(_context.GetV(11)), Is.EqualTo(_unicornEmu.Q[11])); Assert.That(V128ToSimdValue(_context.GetV(12)), Is.EqualTo(_unicornEmu.Q[12])); Assert.That(V128ToSimdValue(_context.GetV(13)), Is.EqualTo(_unicornEmu.Q[13])); Assert.That(V128ToSimdValue(_context.GetV(14)), Is.EqualTo(_unicornEmu.Q[14]), "V14"); Assert.That(V128ToSimdValue(_context.GetV(15)), Is.EqualTo(_unicornEmu.Q[15]), "V15"); Assert.Multiple(() => { Assert.That(_context.GetPstateFlag(PState.GE0Flag), Is.EqualTo((_unicornEmu.CPSR & (1u << 16)) != 0), "GE0Flag"); Assert.That(_context.GetPstateFlag(PState.GE1Flag), Is.EqualTo((_unicornEmu.CPSR & (1u << 17)) != 0), "GE1Flag"); Assert.That(_context.GetPstateFlag(PState.GE2Flag), Is.EqualTo((_unicornEmu.CPSR & (1u << 18)) != 0), "GE2Flag"); Assert.That(_context.GetPstateFlag(PState.GE3Flag), Is.EqualTo((_unicornEmu.CPSR & (1u << 19)) != 0), "GE3Flag"); Assert.That(_context.GetPstateFlag(PState.QFlag), Is.EqualTo(_unicornEmu.QFlag), "QFlag"); Assert.That(_context.GetPstateFlag(PState.VFlag), Is.EqualTo(_unicornEmu.OverflowFlag), "VFlag"); Assert.That(_context.GetPstateFlag(PState.CFlag), Is.EqualTo(_unicornEmu.CarryFlag), "CFlag"); Assert.That(_context.GetPstateFlag(PState.ZFlag), Is.EqualTo(_unicornEmu.ZeroFlag), "ZFlag"); Assert.That(_context.GetPstateFlag(PState.NFlag), Is.EqualTo(_unicornEmu.NegativeFlag), "NFlag"); }); Assert.That((int)_context.Fpscr & (int)fpsrMask, Is.EqualTo(_unicornEmu.Fpscr & (int)fpsrMask), "Fpscr"); if (_usingMemory) { byte[] mem = _memory.GetSpan(DataBaseAddress, (int)Size).ToArray(); byte[] unicornMem = _unicornEmu.MemoryRead(DataBaseAddress, Size); Assert.That(mem, Is.EqualTo(unicornMem), "Data"); } } private void ManageFpSkips(FpSkips fpSkips) { if (fpSkips.HasFlag(FpSkips.IfNaNS)) { if (float.IsNaN(_unicornEmu.Q[0].AsFloat())) { Assert.Ignore("NaN test."); } } else if (fpSkips.HasFlag(FpSkips.IfNaND)) { if (double.IsNaN(_unicornEmu.Q[0].AsDouble())) { Assert.Ignore("NaN test."); } } if (fpSkips.HasFlag(FpSkips.IfUnderflow)) { if ((_unicornEmu.Fpscr & (int)Fpsr.Ufc) != 0) { Assert.Ignore("Underflow test."); } } if (fpSkips.HasFlag(FpSkips.IfOverflow)) { if ((_unicornEmu.Fpscr & (int)Fpsr.Ofc) != 0) { Assert.Ignore("Overflow test."); } } } private void ManageFpTolerances(FpTolerances fpTolerances) { bool IsNormalOrSubnormalS(float f) => float.IsNormal(f) || float.IsSubnormal(f); bool IsNormalOrSubnormalD(double d) => double.IsNormal(d) || double.IsSubnormal(d); if (!Is.EqualTo(_unicornEmu.Q[0]).ApplyTo(V128ToSimdValue(_context.GetV(0))).IsSuccess) { if (fpTolerances == FpTolerances.UpToOneUlpsS) { if (IsNormalOrSubnormalS(_unicornEmu.Q[0].AsFloat()) && IsNormalOrSubnormalS(_context.GetV(0).As())) { Assert.Multiple(() => { Assert.That(_context.GetV(0).Extract(0), Is.EqualTo(_unicornEmu.Q[0].GetFloat(0)).Within(1).Ulps, "V0[0]"); Assert.That(_context.GetV(0).Extract(1), Is.EqualTo(_unicornEmu.Q[0].GetFloat(1)).Within(1).Ulps, "V0[1]"); Assert.That(_context.GetV(0).Extract(2), Is.EqualTo(_unicornEmu.Q[0].GetFloat(2)).Within(1).Ulps, "V0[2]"); Assert.That(_context.GetV(0).Extract(3), Is.EqualTo(_unicornEmu.Q[0].GetFloat(3)).Within(1).Ulps, "V0[3]"); }); Console.WriteLine(fpTolerances); } else { Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0])); } } if (fpTolerances == FpTolerances.UpToOneUlpsD) { if (IsNormalOrSubnormalD(_unicornEmu.Q[0].AsDouble()) && IsNormalOrSubnormalD(_context.GetV(0).As())) { Assert.Multiple(() => { Assert.That(_context.GetV(0).Extract(0), Is.EqualTo(_unicornEmu.Q[0].GetDouble(0)).Within(1).Ulps, "V0[0]"); Assert.That(_context.GetV(0).Extract(1), Is.EqualTo(_unicornEmu.Q[0].GetDouble(1)).Within(1).Ulps, "V0[1]"); }); Console.WriteLine(fpTolerances); } else { Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0])); } } } } private static SimdValue V128ToSimdValue(V128 value) { return new SimdValue(value.Extract(0), value.Extract(1)); } protected static V128 MakeVectorScalar(float value) => new V128(value); protected static V128 MakeVectorScalar(double value) => new V128(value); protected static V128 MakeVectorE0(ulong e0) => new V128(e0, 0); protected static V128 MakeVectorE1(ulong e1) => new V128(0, e1); protected static V128 MakeVectorE0E1(ulong e0, ulong e1) => new V128(e0, e1); protected static V128 MakeVectorE0E1E2E3(uint e0, uint e1, uint e2, uint e3) { return new V128(e0, e1, e2, e3); } protected static ulong GetVectorE0(V128 vector) => vector.Extract(0); protected static ulong GetVectorE1(V128 vector) => vector.Extract(1); protected static ushort GenNormalH() { uint rnd; do rnd = TestContext.CurrentContext.Random.NextUShort(); while ((rnd & 0x7C00u) == 0u || (~rnd & 0x7C00u) == 0u); return (ushort)rnd; } protected static ushort GenSubnormalH() { uint rnd; do rnd = TestContext.CurrentContext.Random.NextUShort(); while ((rnd & 0x03FFu) == 0u); return (ushort)(rnd & 0x83FFu); } protected static uint GenNormalS() { uint rnd; do rnd = TestContext.CurrentContext.Random.NextUInt(); while ((rnd & 0x7F800000u) == 0u || (~rnd & 0x7F800000u) == 0u); return rnd; } protected static uint GenSubnormalS() { uint rnd; do rnd = TestContext.CurrentContext.Random.NextUInt(); while ((rnd & 0x007FFFFFu) == 0u); return rnd & 0x807FFFFFu; } protected static ulong GenNormalD() { ulong rnd; do rnd = TestContext.CurrentContext.Random.NextULong(); while ((rnd & 0x7FF0000000000000ul) == 0ul || (~rnd & 0x7FF0000000000000ul) == 0ul); return rnd; } protected static ulong GenSubnormalD() { ulong rnd; do rnd = TestContext.CurrentContext.Random.NextULong(); while ((rnd & 0x000FFFFFFFFFFFFFul) == 0ul); return rnd & 0x800FFFFFFFFFFFFFul; } } }