#define Simd using ChocolArm64.State; using NUnit.Framework; namespace Ryujinx.Tests.Cpu { using Tester; using Tester.Types; [Category("Simd")] public sealed class CpuTestSimd : CpuTest { #if Simd [SetUp] public void SetupTester() { AArch64.TakeReset(false); } #region "ValueSource" private static ulong[] _1D_() { return new ulong[] { 0x0000000000000000ul, 0x7FFFFFFFFFFFFFFFul, 0x8000000000000000ul, 0xFFFFFFFFFFFFFFFFul }; } private static ulong[] _1H1S1D_() { return new ulong[] { 0x0000000000000000ul, 0x0000000000007FFFul, 0x0000000000008000ul, 0x000000000000FFFFul, 0x000000007FFFFFFFul, 0x0000000080000000ul, 0x00000000FFFFFFFFul, 0x7FFFFFFFFFFFFFFFul, 0x8000000000000000ul, 0xFFFFFFFFFFFFFFFFul }; } private static ulong[] _4H2S1D_() { return new ulong[] { 0x0000000000000000ul, 0x7FFF7FFF7FFF7FFFul, 0x8000800080008000ul, 0x7FFFFFFF7FFFFFFFul, 0x8000000080000000ul, 0x7FFFFFFFFFFFFFFFul, 0x8000000000000000ul, 0xFFFFFFFFFFFFFFFFul }; } private static ulong[] _8B4H_() { return new ulong[] { 0x0000000000000000ul, 0x7F7F7F7F7F7F7F7Ful, 0x8080808080808080ul, 0x7FFF7FFF7FFF7FFFul, 0x8000800080008000ul, 0xFFFFFFFFFFFFFFFFul }; } private static ulong[] _8B4H2S_() { return new ulong[] { 0x0000000000000000ul, 0x7F7F7F7F7F7F7F7Ful, 0x8080808080808080ul, 0x7FFF7FFF7FFF7FFFul, 0x8000800080008000ul, 0x7FFFFFFF7FFFFFFFul, 0x8000000080000000ul, 0xFFFFFFFFFFFFFFFFul }; } private static ulong[] _8B4H2S1D_() { return new ulong[] { 0x0000000000000000ul, 0x7F7F7F7F7F7F7F7Ful, 0x8080808080808080ul, 0x7FFF7FFF7FFF7FFFul, 0x8000800080008000ul, 0x7FFFFFFF7FFFFFFFul, 0x8000000080000000ul, 0x7FFFFFFFFFFFFFFFul, 0x8000000000000000ul, 0xFFFFFFFFFFFFFFFFul }; } #endregion [Test, Description("ABS , ")] public void Abs_S_D([ValueSource("_1D_")] [Random(1)] ulong A) { uint Opcode = 0x5EE0B820; // ABS D0, D1 Bits Op = new Bits(Opcode); AVec V0 = new AVec { X1 = TestContext.CurrentContext.Random.NextULong() }; AVec V1 = new AVec { X0 = A }; AThreadState ThreadState = SingleOpcode(Opcode, V0: V0, V1: V1); AArch64.V(1, new Bits(A)); SimdFp.Abs_S(Op[23, 22], Op[9, 5], Op[4, 0]); Assert.Multiple(() => { Assert.That(ThreadState.V0.X0, Is.EqualTo(AArch64.V(64, 0).ToUInt64())); Assert.That(ThreadState.V0.X1, Is.Zero); }); } [Test, Description("ABS ., .")] public void Abs_V_8B_4H_2S([ValueSource("_8B4H2S_")] [Random(1)] ulong A, [Values(0b00u, 0b01u, 0b10u)] uint size) // <8B, 4H, 2S> { uint Opcode = 0x0E20B820; // ABS V0.8B, V1.8B Opcode |= ((size & 3) << 22); Bits Op = new Bits(Opcode); AVec V0 = new AVec { X1 = TestContext.CurrentContext.Random.NextULong() }; AVec V1 = new AVec { X0 = A }; AThreadState ThreadState = SingleOpcode(Opcode, V0: V0, V1: V1); AArch64.V(1, new Bits(A)); SimdFp.Abs_V(Op[30], Op[23, 22], Op[9, 5], Op[4, 0]); Assert.Multiple(() => { Assert.That(ThreadState.V0.X0, Is.EqualTo(AArch64.V(64, 0).ToUInt64())); Assert.That(ThreadState.V0.X1, Is.Zero); }); } [Test, Pairwise, Description("ABS ., .")] public void Abs_V_16B_8H_4S_2D([ValueSource("_8B4H2S1D_")] [Random(1)] ulong A0, [ValueSource("_8B4H2S1D_")] [Random(1)] ulong A1, [Values(0b00u, 0b01u, 0b10u, 0b11u)] uint size) // <16B, 8H, 4S, 2D> { uint Opcode = 0x4E20B820; // ABS V0.16B, V1.16B Opcode |= ((size & 3) << 22); Bits Op = new Bits(Opcode); AVec V1 = new AVec { X0 = A0, X1 = A1 }; AThreadState ThreadState = SingleOpcode(Opcode, V1: V1); AArch64.Vpart(1, 0, new Bits(A0)); AArch64.Vpart(1, 1, new Bits(A1)); SimdFp.Abs_V(Op[30], Op[23, 22], Op[9, 5], Op[4, 0]); Assert.Multiple(() => { Assert.That(ThreadState.V0.X0, Is.EqualTo(AArch64.Vpart(64, 0, 0).ToUInt64())); Assert.That(ThreadState.V0.X1, Is.EqualTo(AArch64.Vpart(64, 0, 1).ToUInt64())); }); } [Test, Pairwise, Description("ADDP , .")] public void Addp_S_2DD([ValueSource("_1D_")] [Random(1)] ulong A0, [ValueSource("_1D_")] [Random(1)] ulong A1) { uint Opcode = 0x5EF1B820; // ADDP D0, V1.2D Bits Op = new Bits(Opcode); AVec V0 = new AVec { X1 = TestContext.CurrentContext.Random.NextULong() }; AVec V1 = new AVec { X0 = A0, X1 = A1 }; AThreadState ThreadState = SingleOpcode(Opcode, V0: V0, V1: V1); AArch64.Vpart(1, 0, new Bits(A0)); AArch64.Vpart(1, 1, new Bits(A1)); SimdFp.Addp_S(Op[23, 22], Op[9, 5], Op[4, 0]); Assert.Multiple(() => { Assert.That(ThreadState.V0.X0, Is.EqualTo(AArch64.V(64, 0).ToUInt64())); Assert.That(ThreadState.V0.X1, Is.Zero); }); } [Test, Description("ADDV , .")] public void Addv_V_8BB_4HH([ValueSource("_8B4H_")] [Random(1)] ulong A, [Values(0b00u, 0b01u)] uint size) // <8B, 4H> { uint Opcode = 0x0E31B820; // ADDV B0, V1.8B Opcode |= ((size & 3) << 22); Bits Op = new Bits(Opcode); AVec V0 = new AVec { X0 = TestContext.CurrentContext.Random.NextULong(), X1 = TestContext.CurrentContext.Random.NextULong() }; AVec V1 = new AVec { X0 = A }; AThreadState ThreadState = SingleOpcode(Opcode, V0: V0, V1: V1); AArch64.Vpart(0, 0, new Bits(TestContext.CurrentContext.Random.NextULong())); AArch64.V(1, new Bits(A)); SimdFp.Addv_V(Op[30], Op[23, 22], Op[9, 5], Op[4, 0]); Assert.Multiple(() => { Assert.That(ThreadState.V0.X0, Is.EqualTo(AArch64.V(64, 0).ToUInt64())); Assert.That(ThreadState.V0.X1, Is.Zero); }); } [Test, Pairwise, Description("ADDV , .")] public void Addv_V_16BB_8HH_4SS([ValueSource("_8B4H2S_")] [Random(1)] ulong A0, [ValueSource("_8B4H2S_")] [Random(1)] ulong A1, [Values(0b00u, 0b01u, 0b10u)] uint size) // <16B, 8H, 4S> { uint Opcode = 0x4E31B820; // ADDV B0, V1.16B Opcode |= ((size & 3) << 22); Bits Op = new Bits(Opcode); AVec V0 = new AVec { X0 = TestContext.CurrentContext.Random.NextULong(), X1 = TestContext.CurrentContext.Random.NextULong() }; AVec V1 = new AVec { X0 = A0, X1 = A1 }; AThreadState ThreadState = SingleOpcode(Opcode, V0: V0, V1: V1); AArch64.Vpart(0, 0, new Bits(TestContext.CurrentContext.Random.NextULong())); AArch64.Vpart(1, 0, new Bits(A0)); AArch64.Vpart(1, 1, new Bits(A1)); SimdFp.Addv_V(Op[30], Op[23, 22], Op[9, 5], Op[4, 0]); Assert.Multiple(() => { Assert.That(ThreadState.V0.X0, Is.EqualTo(AArch64.V(64, 0).ToUInt64())); Assert.That(ThreadState.V0.X1, Is.Zero); }); } [Test, Description("CLS ., .")] public void Cls_V_8B_4H_2S([ValueSource("_8B4H2S_")] [Random(1)] ulong A, [Values(0b00u, 0b01u, 0b10u)] uint size) // <8B, 4H, 2S> { uint Opcode = 0x0E204820; // CLS V0.8B, V1.8B Opcode |= ((size & 3) << 22); Bits Op = new Bits(Opcode); AVec V0 = new AVec { X1 = TestContext.CurrentContext.Random.NextULong() }; AVec V1 = new AVec { X0 = A }; AThreadState ThreadState = SingleOpcode(Opcode, V0: V0, V1: V1); AArch64.V(1, new Bits(A)); SimdFp.Cls_V(Op[30], Op[23, 22], Op[9, 5], Op[4, 0]); Assert.Multiple(() => { Assert.That(ThreadState.V0.X0, Is.EqualTo(AArch64.V(64, 0).ToUInt64())); Assert.That(ThreadState.V0.X1, Is.Zero); }); } [Test, Pairwise, Description("CLS ., .")] public void Cls_V_16B_8H_4S([ValueSource("_8B4H2S_")] [Random(1)] ulong A0, [ValueSource("_8B4H2S_")] [Random(1)] ulong A1, [Values(0b00u, 0b01u, 0b10u)] uint size) // <16B, 8H, 4S> { uint Opcode = 0x4E204820; // CLS V0.16B, V1.16B Opcode |= ((size & 3) << 22); Bits Op = new Bits(Opcode); AVec V1 = new AVec { X0 = A0, X1 = A1 }; AThreadState ThreadState = SingleOpcode(Opcode, V1: V1); AArch64.Vpart(1, 0, new Bits(A0)); AArch64.Vpart(1, 1, new Bits(A1)); SimdFp.Cls_V(Op[30], Op[23, 22], Op[9, 5], Op[4, 0]); Assert.Multiple(() => { Assert.That(ThreadState.V0.X0, Is.EqualTo(AArch64.Vpart(64, 0, 0).ToUInt64())); Assert.That(ThreadState.V0.X1, Is.EqualTo(AArch64.Vpart(64, 0, 1).ToUInt64())); }); } [Test, Description("CLZ ., .")] public void Clz_V_8B_4H_2S([ValueSource("_8B4H2S_")] [Random(1)] ulong A, [Values(0b00u, 0b01u, 0b10u)] uint size) // <8B, 4H, 2S> { uint Opcode = 0x2E204820; // CLZ V0.8B, V1.8B Opcode |= ((size & 3) << 22); Bits Op = new Bits(Opcode); AVec V0 = new AVec { X1 = TestContext.CurrentContext.Random.NextULong() }; AVec V1 = new AVec { X0 = A }; AThreadState ThreadState = SingleOpcode(Opcode, V0: V0, V1: V1); AArch64.V(1, new Bits(A)); SimdFp.Clz_V(Op[30], Op[23, 22], Op[9, 5], Op[4, 0]); Assert.Multiple(() => { Assert.That(ThreadState.V0.X0, Is.EqualTo(AArch64.V(64, 0).ToUInt64())); Assert.That(ThreadState.V0.X1, Is.Zero); }); } [Test, Pairwise, Description("CLZ ., .")] public void Clz_V_16B_8H_4S([ValueSource("_8B4H2S_")] [Random(1)] ulong A0, [ValueSource("_8B4H2S_")] [Random(1)] ulong A1, [Values(0b00u, 0b01u, 0b10u)] uint size) // <16B, 8H, 4S> { uint Opcode = 0x6E204820; // CLZ V0.16B, V1.16B Opcode |= ((size & 3) << 22); Bits Op = new Bits(Opcode); AVec V1 = new AVec { X0 = A0, X1 = A1 }; AThreadState ThreadState = SingleOpcode(Opcode, V1: V1); AArch64.Vpart(1, 0, new Bits(A0)); AArch64.Vpart(1, 1, new Bits(A1)); SimdFp.Clz_V(Op[30], Op[23, 22], Op[9, 5], Op[4, 0]); Assert.Multiple(() => { Assert.That(ThreadState.V0.X0, Is.EqualTo(AArch64.Vpart(64, 0, 0).ToUInt64())); Assert.That(ThreadState.V0.X1, Is.EqualTo(AArch64.Vpart(64, 0, 1).ToUInt64())); }); } [Test, Description("NEG , ")] public void Neg_S_D([ValueSource("_1D_")] [Random(1)] ulong A) { uint Opcode = 0x7EE0B820; // NEG D0, D1 Bits Op = new Bits(Opcode); AVec V0 = new AVec { X1 = TestContext.CurrentContext.Random.NextULong() }; AVec V1 = new AVec { X0 = A }; AThreadState ThreadState = SingleOpcode(Opcode, V0: V0, V1: V1); AArch64.V(1, new Bits(A)); SimdFp.Neg_S(Op[23, 22], Op[9, 5], Op[4, 0]); Assert.Multiple(() => { Assert.That(ThreadState.V0.X0, Is.EqualTo(AArch64.V(64, 0).ToUInt64())); Assert.That(ThreadState.V0.X1, Is.Zero); }); } [Test, Description("NEG ., .")] public void Neg_V_8B_4H_2S([ValueSource("_8B4H2S_")] [Random(1)] ulong A, [Values(0b00u, 0b01u, 0b10u)] uint size) // <8B, 4H, 2S> { uint Opcode = 0x2E20B820; // NEG V0.8B, V1.8B Opcode |= ((size & 3) << 22); Bits Op = new Bits(Opcode); AVec V0 = new AVec { X1 = TestContext.CurrentContext.Random.NextULong() }; AVec V1 = new AVec { X0 = A }; AThreadState ThreadState = SingleOpcode(Opcode, V0: V0, V1: V1); AArch64.V(1, new Bits(A)); SimdFp.Neg_V(Op[30], Op[23, 22], Op[9, 5], Op[4, 0]); Assert.Multiple(() => { Assert.That(ThreadState.V0.X0, Is.EqualTo(AArch64.V(64, 0).ToUInt64())); Assert.That(ThreadState.V0.X1, Is.Zero); }); } [Test, Pairwise, Description("NEG ., .")] public void Neg_V_16B_8H_4S_2D([ValueSource("_8B4H2S1D_")] [Random(1)] ulong A0, [ValueSource("_8B4H2S1D_")] [Random(1)] ulong A1, [Values(0b00u, 0b01u, 0b10u, 0b11u)] uint size) // <16B, 8H, 4S, 2D> { uint Opcode = 0x6E20B820; // NEG V0.16B, V1.16B Opcode |= ((size & 3) << 22); Bits Op = new Bits(Opcode); AVec V1 = new AVec { X0 = A0, X1 = A1 }; AThreadState ThreadState = SingleOpcode(Opcode, V1: V1); AArch64.Vpart(1, 0, new Bits(A0)); AArch64.Vpart(1, 1, new Bits(A1)); SimdFp.Neg_V(Op[30], Op[23, 22], Op[9, 5], Op[4, 0]); Assert.Multiple(() => { Assert.That(ThreadState.V0.X0, Is.EqualTo(AArch64.Vpart(64, 0, 0).ToUInt64())); Assert.That(ThreadState.V0.X1, Is.EqualTo(AArch64.Vpart(64, 0, 1).ToUInt64())); }); } [Test, Description("SQXTN , ")] public void Sqxtn_S_HB_SH_DS([ValueSource("_1H1S1D_")] [Random(1)] ulong A, [Values(0b00u, 0b01u, 0b10u)] uint size) // { uint Opcode = 0x5E214820; // SQXTN B0, H1 Opcode |= ((size & 3) << 22); Bits Op = new Bits(Opcode); AVec V0 = new AVec { X0 = TestContext.CurrentContext.Random.NextULong(), X1 = TestContext.CurrentContext.Random.NextULong() }; AVec V1 = new AVec { X0 = A }; AThreadState ThreadState = SingleOpcode(Opcode, V0: V0, V1: V1); AArch64.Vpart(0, 0, new Bits(TestContext.CurrentContext.Random.NextULong())); AArch64.V(1, new Bits(A)); SimdFp.Sqxtn_S(Op[23, 22], Op[9, 5], Op[4, 0]); Assert.Multiple(() => { Assert.That(ThreadState.V0.X0, Is.EqualTo(AArch64.V(64, 0).ToUInt64())); Assert.That(ThreadState.V0.X1, Is.Zero); }); Assert.That(((ThreadState.Fpsr >> 27) & 1) != 0, Is.EqualTo(Shared.FPSR[27])); // FIXME: Temporary solution. } [Test, Pairwise, Description("SQXTN{2} ., .")] public void Sqxtn_V_8H8B_4S4H_2D2S([ValueSource("_4H2S1D_")] [Random(1)] ulong A0, [ValueSource("_4H2S1D_")] [Random(1)] ulong A1, [Values(0b00u, 0b01u, 0b10u)] uint size) // <8H8B, 4S4H, 2D2S> { uint Opcode = 0x0E214820; // SQXTN V0.8B, V1.8H Opcode |= ((size & 3) << 22); Bits Op = new Bits(Opcode); AVec V0 = new AVec { X1 = TestContext.CurrentContext.Random.NextULong() }; AVec V1 = new AVec { X0 = A0, X1 = A1 }; AThreadState ThreadState = SingleOpcode(Opcode, V0: V0, V1: V1); AArch64.Vpart(1, 0, new Bits(A0)); AArch64.Vpart(1, 1, new Bits(A1)); SimdFp.Sqxtn_V(Op[30], Op[23, 22], Op[9, 5], Op[4, 0]); Assert.Multiple(() => { Assert.That(ThreadState.V0.X0, Is.EqualTo(AArch64.V(64, 0).ToUInt64())); Assert.That(ThreadState.V0.X1, Is.Zero); }); Assert.That(((ThreadState.Fpsr >> 27) & 1) != 0, Is.EqualTo(Shared.FPSR[27])); // FIXME: Temporary solution. } [Test, Pairwise, Description("SQXTN{2} ., .")] public void Sqxtn_V_8H16B_4S8H_2D4S([ValueSource("_4H2S1D_")] [Random(1)] ulong A0, [ValueSource("_4H2S1D_")] [Random(1)] ulong A1, [Values(0b00u, 0b01u, 0b10u)] uint size) // <8H16B, 4S8H, 2D4S> { uint Opcode = 0x4E214820; // SQXTN2 V0.16B, V1.8H Opcode |= ((size & 3) << 22); Bits Op = new Bits(Opcode); ulong _X0 = TestContext.CurrentContext.Random.NextULong(); AVec V0 = new AVec { X0 = _X0 }; AVec V1 = new AVec { X0 = A0, X1 = A1 }; AThreadState ThreadState = SingleOpcode(Opcode, V0: V0, V1: V1); AArch64.Vpart(1, 0, new Bits(A0)); AArch64.Vpart(1, 1, new Bits(A1)); SimdFp.Sqxtn_V(Op[30], Op[23, 22], Op[9, 5], Op[4, 0]); Assert.Multiple(() => { Assert.That(ThreadState.V0.X0, Is.EqualTo(_X0)); Assert.That(ThreadState.V0.X1, Is.EqualTo(AArch64.Vpart(64, 0, 1).ToUInt64())); }); Assert.That(((ThreadState.Fpsr >> 27) & 1) != 0, Is.EqualTo(Shared.FPSR[27])); // FIXME: Temporary solution. } [Test, Description("UQXTN , ")] public void Uqxtn_S_HB_SH_DS([ValueSource("_1H1S1D_")] [Random(1)] ulong A, [Values(0b00u, 0b01u, 0b10u)] uint size) // { uint Opcode = 0x7E214820; // UQXTN B0, H1 Opcode |= ((size & 3) << 22); Bits Op = new Bits(Opcode); AVec V0 = new AVec { X0 = TestContext.CurrentContext.Random.NextULong(), X1 = TestContext.CurrentContext.Random.NextULong() }; AVec V1 = new AVec { X0 = A }; AThreadState ThreadState = SingleOpcode(Opcode, V0: V0, V1: V1); AArch64.Vpart(0, 0, new Bits(TestContext.CurrentContext.Random.NextULong())); AArch64.V(1, new Bits(A)); SimdFp.Uqxtn_S(Op[23, 22], Op[9, 5], Op[4, 0]); Assert.Multiple(() => { Assert.That(ThreadState.V0.X0, Is.EqualTo(AArch64.V(64, 0).ToUInt64())); Assert.That(ThreadState.V0.X1, Is.Zero); }); Assert.That(((ThreadState.Fpsr >> 27) & 1) != 0, Is.EqualTo(Shared.FPSR[27])); // FIXME: Temporary solution. } [Test, Pairwise, Description("UQXTN{2} ., .")] public void Uqxtn_V_8H8B_4S4H_2D2S([ValueSource("_4H2S1D_")] [Random(1)] ulong A0, [ValueSource("_4H2S1D_")] [Random(1)] ulong A1, [Values(0b00u, 0b01u, 0b10u)] uint size) // <8H8B, 4S4H, 2D2S> { uint Opcode = 0x2E214820; // UQXTN V0.8B, V1.8H Opcode |= ((size & 3) << 22); Bits Op = new Bits(Opcode); AVec V0 = new AVec { X1 = TestContext.CurrentContext.Random.NextULong() }; AVec V1 = new AVec { X0 = A0, X1 = A1 }; AThreadState ThreadState = SingleOpcode(Opcode, V0: V0, V1: V1); AArch64.Vpart(1, 0, new Bits(A0)); AArch64.Vpart(1, 1, new Bits(A1)); SimdFp.Uqxtn_V(Op[30], Op[23, 22], Op[9, 5], Op[4, 0]); Assert.Multiple(() => { Assert.That(ThreadState.V0.X0, Is.EqualTo(AArch64.V(64, 0).ToUInt64())); Assert.That(ThreadState.V0.X1, Is.Zero); }); Assert.That(((ThreadState.Fpsr >> 27) & 1) != 0, Is.EqualTo(Shared.FPSR[27])); // FIXME: Temporary solution. } [Test, Pairwise, Description("UQXTN{2} ., .")] public void Uqxtn_V_8H16B_4S8H_2D4S([ValueSource("_4H2S1D_")] [Random(1)] ulong A0, [ValueSource("_4H2S1D_")] [Random(1)] ulong A1, [Values(0b00u, 0b01u, 0b10u)] uint size) // <8H16B, 4S8H, 2D4S> { uint Opcode = 0x6E214820; // UQXTN2 V0.16B, V1.8H Opcode |= ((size & 3) << 22); Bits Op = new Bits(Opcode); ulong _X0 = TestContext.CurrentContext.Random.NextULong(); AVec V0 = new AVec { X0 = _X0 }; AVec V1 = new AVec { X0 = A0, X1 = A1 }; AThreadState ThreadState = SingleOpcode(Opcode, V0: V0, V1: V1); AArch64.Vpart(1, 0, new Bits(A0)); AArch64.Vpart(1, 1, new Bits(A1)); SimdFp.Uqxtn_V(Op[30], Op[23, 22], Op[9, 5], Op[4, 0]); Assert.Multiple(() => { Assert.That(ThreadState.V0.X0, Is.EqualTo(_X0)); Assert.That(ThreadState.V0.X1, Is.EqualTo(AArch64.Vpart(64, 0, 1).ToUInt64())); }); Assert.That(((ThreadState.Fpsr >> 27) & 1) != 0, Is.EqualTo(Shared.FPSR[27])); // FIXME: Temporary solution. } #endif } }