using Ryujinx.Common.Logging; using Ryujinx.Graphics.Gal; using Ryujinx.Graphics.Memory; using Ryujinx.Graphics.Texture; using System; using System.Collections.Generic; namespace Ryujinx.Graphics { public class GpuResourceManager { private enum ImageType { None, Texture, TextureArrayLayer, ColorBuffer, ZetaBuffer } private NvGpu Gpu; private HashSet[] UploadedKeys; private Dictionary ImageTypes; private Dictionary MirroredTextures; public GpuResourceManager(NvGpu Gpu) { this.Gpu = Gpu; UploadedKeys = new HashSet[(int)NvGpuBufferType.Count]; for (int Index = 0; Index < UploadedKeys.Length; Index++) { UploadedKeys[Index] = new HashSet(); } ImageTypes = new Dictionary(); MirroredTextures = new Dictionary(); } public void SendColorBuffer(NvGpuVmm Vmm, long Position, int Attachment, GalImage NewImage) { long Size = (uint)ImageUtils.GetSize(NewImage); ImageTypes[Position] = ImageType.ColorBuffer; if (!TryReuse(Vmm, Position, NewImage)) { Gpu.Renderer.Texture.Create(Position, (int)Size, NewImage); } Gpu.Renderer.RenderTarget.BindColor(Position, Attachment); } public void SendZetaBuffer(NvGpuVmm Vmm, long Position, GalImage NewImage) { long Size = (uint)ImageUtils.GetSize(NewImage); ImageTypes[Position] = ImageType.ZetaBuffer; if (!TryReuse(Vmm, Position, NewImage)) { Gpu.Renderer.Texture.Create(Position, (int)Size, NewImage); } Gpu.Renderer.RenderTarget.BindZeta(Position); } public void SendTexture(NvGpuVmm Vmm, long Position, GalImage NewImage) { PrepareSendTexture(Vmm, Position, NewImage); ImageTypes[Position] = ImageType.Texture; } public bool TryGetTextureLayer(long Position, out int LayerIndex) { if (MirroredTextures.TryGetValue(Position, out LayerIndex)) { ImageType Type = ImageTypes[Position]; // FIXME(thog): I'm actually unsure if we should deny all other image type, gpu testing needs to be done here. if (Type != ImageType.Texture && Type != ImageType.TextureArrayLayer) { LayerIndex = -1; return false; } return true; } LayerIndex = -1; return false; } public void SetTextureArrayLayer(long Position, int LayerIndex) { ImageTypes[Position] = ImageType.TextureArrayLayer; MirroredTextures[Position] = LayerIndex; } private void PrepareSendTexture(NvGpuVmm Vmm, long Position, GalImage NewImage) { long Size = ImageUtils.GetSize(NewImage); bool SkipCheck = false; if (ImageTypes.TryGetValue(Position, out ImageType OldType)) { if (OldType == ImageType.ColorBuffer || OldType == ImageType.ZetaBuffer) { //Avoid data destruction MemoryRegionModified(Vmm, Position, Size, NvGpuBufferType.Texture); SkipCheck = true; } } if (SkipCheck || !MemoryRegionModified(Vmm, Position, Size, NvGpuBufferType.Texture)) { if (TryReuse(Vmm, Position, NewImage)) { return; } } byte[] Data = ImageUtils.ReadTexture(Vmm, NewImage, Position); Gpu.Renderer.Texture.Create(Position, Data, NewImage); } private bool TryReuse(NvGpuVmm Vmm, long Position, GalImage NewImage) { if (Gpu.Renderer.Texture.TryGetImage(Position, out GalImage CachedImage) && CachedImage.TextureTarget == NewImage.TextureTarget && CachedImage.SizeMatches(NewImage)) { Gpu.Renderer.RenderTarget.Reinterpret(Position, NewImage); return true; } return false; } public bool MemoryRegionModified(NvGpuVmm Vmm, long Position, long Size, NvGpuBufferType Type) { HashSet Uploaded = UploadedKeys[(int)Type]; if (!Uploaded.Add(Position)) { return false; } return Vmm.IsRegionModified(Position, Size, Type); } public void ClearPbCache() { for (int Index = 0; Index < UploadedKeys.Length; Index++) { UploadedKeys[Index].Clear(); } } public void ClearPbCache(NvGpuBufferType Type) { UploadedKeys[(int)Type].Clear(); } } }