using Ryujinx.Graphics.Shader.CodeGen.Glsl; using Ryujinx.Graphics.Shader.Decoders; using Ryujinx.Graphics.Shader.Instructions; using Ryujinx.Graphics.Shader.IntermediateRepresentation; using Ryujinx.Graphics.Shader.StructuredIr; using Ryujinx.Graphics.Shader.Translation.Optimizations; using System; using System.Collections.Generic; using static Ryujinx.Graphics.Shader.IntermediateRepresentation.OperandHelper; namespace Ryujinx.Graphics.Shader.Translation { public static class Translator { private const int HeaderSize = 0x50; public static Span ExtractCode(Span code, bool compute, out int headerSize) { if (compute) { headerSize = 0; } else { headerSize = HeaderSize; } Block[] cfg = Decoder.Decode(code, (ulong)headerSize); if (cfg == null) { // TODO: Error. return code; } ulong endAddress = 0; foreach (Block block in cfg) { if (endAddress < block.EndAddress) { endAddress = block.EndAddress; } } return code.Slice(0, headerSize + (int)endAddress); } public static ShaderProgram Translate(Span code, TranslationConfig translationConfig) { bool compute = (translationConfig.Flags & TranslationFlags.Compute) != 0; bool debugMode = (translationConfig.Flags & TranslationFlags.DebugMode) != 0; Operation[] ops = DecodeShader( code, compute, debugMode, out ShaderHeader header, out int size); ShaderStage stage; if (compute) { stage = ShaderStage.Compute; } else { stage = header.Stage; } int maxOutputVertexCount = 0; OutputTopology outputTopology = OutputTopology.LineStrip; if (!compute) { maxOutputVertexCount = header.MaxOutputVertexCount; outputTopology = header.OutputTopology; } ShaderConfig config = new ShaderConfig( stage, translationConfig.Flags, translationConfig.MaxCBufferSize, maxOutputVertexCount, outputTopology); return Translate(ops, config, size); } public static ShaderProgram Translate(Span vpACode, Span vpBCode, TranslationConfig translationConfig) { bool debugMode = (translationConfig.Flags & TranslationFlags.DebugMode) != 0; Operation[] vpAOps = DecodeShader(vpACode, compute: false, debugMode, out _, out _); Operation[] vpBOps = DecodeShader(vpBCode, compute: false, debugMode, out ShaderHeader header, out int sizeB); ShaderConfig config = new ShaderConfig( header.Stage, translationConfig.Flags, translationConfig.MaxCBufferSize, header.MaxOutputVertexCount, header.OutputTopology); return Translate(Combine(vpAOps, vpBOps), config, sizeB); } private static ShaderProgram Translate(Operation[] ops, ShaderConfig config, int size) { BasicBlock[] irBlocks = ControlFlowGraph.MakeCfg(ops); if (irBlocks.Length > 0) { Dominance.FindDominators(irBlocks[0], irBlocks.Length); Dominance.FindDominanceFrontiers(irBlocks); Ssa.Rename(irBlocks); Optimizer.Optimize(irBlocks, config.Stage); } StructuredProgramInfo sInfo = StructuredProgram.MakeStructuredProgram(irBlocks, config); GlslProgram program = GlslGenerator.Generate(sInfo, config); ShaderProgramInfo spInfo = new ShaderProgramInfo( program.CBufferDescriptors, program.SBufferDescriptors, program.TextureDescriptors, program.ImageDescriptors, sInfo.InterpolationQualifiers, sInfo.UsesInstanceId); string glslCode = program.Code; return new ShaderProgram(spInfo, config.Stage, glslCode, size); } private static Operation[] DecodeShader( Span code, bool compute, bool debugMode, out ShaderHeader header, out int size) { Block[] cfg; EmitterContext context; if (compute) { header = null; cfg = Decoder.Decode(code, 0); context = new EmitterContext(ShaderStage.Compute, header); } else { header = new ShaderHeader(code); cfg = Decoder.Decode(code, HeaderSize); context = new EmitterContext(header.Stage, header); } if (cfg == null) { // TODO: Error. size = 0; return new Operation[0]; } ulong maxEndAddress = 0; for (int blkIndex = 0; blkIndex < cfg.Length; blkIndex++) { Block block = cfg[blkIndex]; if (maxEndAddress < block.EndAddress) { maxEndAddress = block.EndAddress; } context.CurrBlock = block; context.MarkLabel(context.GetLabel(block.Address)); for (int opIndex = 0; opIndex < block.OpCodes.Count; opIndex++) { OpCode op = block.OpCodes[opIndex]; if (debugMode) { string instName; if (op.Emitter != null) { instName = op.Emitter.Method.Name; } else { instName = "???"; } string dbgComment = $"0x{op.Address:X6}: 0x{op.RawOpCode:X16} {instName}"; context.Add(new CommentNode(dbgComment)); } if (op.NeverExecute) { continue; } Operand predSkipLbl = null; bool skipPredicateCheck = op.Emitter == InstEmit.Bra; if (op is OpCodeBranchPop opBranchPop) { // If the instruction is a SYNC instruction with only one // possible target address, then the instruction is basically // just a simple branch, we can generate code similar to branch // instructions, with the condition check on the branch itself. skipPredicateCheck |= opBranchPop.Targets.Count < 2; } if (!(op.Predicate.IsPT || skipPredicateCheck)) { Operand label; if (opIndex == block.OpCodes.Count - 1 && block.Next != null) { label = context.GetLabel(block.Next.Address); } else { label = Label(); predSkipLbl = label; } Operand pred = Register(op.Predicate); if (op.InvertPredicate) { context.BranchIfTrue(label, pred); } else { context.BranchIfFalse(label, pred); } } context.CurrOp = op; if (op.Emitter != null) { op.Emitter(context); } if (predSkipLbl != null) { context.MarkLabel(predSkipLbl); } } } size = (int)maxEndAddress + (compute ? 0 : HeaderSize); return context.GetOperations(); } private static Operation[] Combine(Operation[] a, Operation[] b) { // Here we combine two shaders. // For shader A: // - All user attribute stores on shader A are turned into copies to a // temporary variable. It's assumed that shader B will consume them. // - All return instructions are turned into branch instructions, the // branch target being the start of the shader B code. // For shader B: // - All user attribute loads on shader B are turned into copies from a // temporary variable, as long that attribute is written by shader A. List output = new List(a.Length + b.Length); Operand[] temps = new Operand[AttributeConsts.UserAttributesCount * 4]; Operand lblB = Label(); for (int index = 0; index < a.Length; index++) { Operation operation = a[index]; if (IsUserAttribute(operation.Dest)) { int tIndex = (operation.Dest.Value - AttributeConsts.UserAttributeBase) / 4; Operand temp = temps[tIndex]; if (temp == null) { temp = Local(); temps[tIndex] = temp; } operation.Dest = temp; } if (operation.Inst == Instruction.Return) { output.Add(new Operation(Instruction.Branch, lblB)); } else { output.Add(operation); } } output.Add(new Operation(Instruction.MarkLabel, lblB)); for (int index = 0; index < b.Length; index++) { Operation operation = b[index]; for (int srcIndex = 0; srcIndex < operation.SourcesCount; srcIndex++) { Operand src = operation.GetSource(srcIndex); if (IsUserAttribute(src)) { Operand temp = temps[(src.Value - AttributeConsts.UserAttributeBase) / 4]; if (temp != null) { operation.SetSource(srcIndex, temp); } } } output.Add(operation); } return output.ToArray(); } private static bool IsUserAttribute(Operand operand) { return operand != null && operand.Type == OperandType.Attribute && operand.Value >= AttributeConsts.UserAttributeBase && operand.Value < AttributeConsts.UserAttributeEnd; } } }