using Ryujinx.HLE.HOS.Kernel.Common; using Ryujinx.HLE.HOS.Kernel.Process; using Ryujinx.HLE.HOS.Kernel.Threading; namespace Ryujinx.HLE.HOS.Kernel.SupervisorCall { partial class SvcHandler { public KernelResult CreateThread64( ulong entrypoint, ulong argsPtr, ulong stackTop, int priority, int cpuCore, out int handle) { return CreateThread(entrypoint, argsPtr, stackTop, priority, cpuCore, out handle); } private KernelResult CreateThread( ulong entrypoint, ulong argsPtr, ulong stackTop, int priority, int cpuCore, out int handle) { handle = 0; KProcess currentProcess = _system.Scheduler.GetCurrentProcess(); if (cpuCore == -2) { cpuCore = currentProcess.DefaultCpuCore; } if ((uint)cpuCore >= KScheduler.CpuCoresCount || !currentProcess.IsCpuCoreAllowed(cpuCore)) { return KernelResult.InvalidCpuCore; } if ((uint)priority >= KScheduler.PrioritiesCount || !currentProcess.IsPriorityAllowed(priority)) { return KernelResult.InvalidPriority; } long timeout = KTimeManager.ConvertMillisecondsToNanoseconds(100); if (currentProcess.ResourceLimit != null && !currentProcess.ResourceLimit.Reserve(LimitableResource.Thread, 1, timeout)) { return KernelResult.ResLimitExceeded; } KThread thread = new KThread(_system); KernelResult result = currentProcess.InitializeThread( thread, entrypoint, argsPtr, stackTop, priority, cpuCore); if (result == KernelResult.Success) { result = _process.HandleTable.GenerateHandle(thread, out handle); } else { currentProcess.ResourceLimit?.Release(LimitableResource.Thread, 1); } thread.DecrementReferenceCount(); return result; } public KernelResult StartThread64(int handle) { return StartThread(handle); } private KernelResult StartThread(int handle) { KThread thread = _process.HandleTable.GetKThread(handle); if (thread != null) { thread.IncrementReferenceCount(); KernelResult result = thread.Start(); if (result == KernelResult.Success) { thread.IncrementReferenceCount(); } thread.DecrementReferenceCount(); return result; } else { return KernelResult.InvalidHandle; } } public void ExitThread64() { ExitThread(); } private void ExitThread() { KThread currentThread = _system.Scheduler.GetCurrentThread(); _system.Scheduler.ExitThread(currentThread); currentThread.Exit(); } public void SleepThread64(long timeout) { SleepThread(timeout); } private void SleepThread(long timeout) { KThread currentThread = _system.Scheduler.GetCurrentThread(); if (timeout < 1) { switch (timeout) { case 0: currentThread.Yield(); break; case -1: currentThread.YieldWithLoadBalancing(); break; case -2: currentThread.YieldAndWaitForLoadBalancing(); break; } } else { currentThread.Sleep(timeout); } } public KernelResult GetThreadPriority64(int handle, out int priority) { return GetThreadPriority(handle, out priority); } private KernelResult GetThreadPriority(int handle, out int priority) { KThread thread = _process.HandleTable.GetKThread(handle); if (thread != null) { priority = thread.DynamicPriority; return KernelResult.Success; } else { priority = 0; return KernelResult.InvalidHandle; } } public KernelResult SetThreadPriority64(int handle, int priority) { return SetThreadPriority(handle, priority); } public KernelResult SetThreadPriority(int handle, int priority) { //TODO: NPDM check. KThread thread = _process.HandleTable.GetKThread(handle); if (thread == null) { return KernelResult.InvalidHandle; } thread.SetPriority(priority); return KernelResult.Success; } public KernelResult GetThreadCoreMask64(int handle, out int preferredCore, out long affinityMask) { return GetThreadCoreMask(handle, out preferredCore, out affinityMask); } private KernelResult GetThreadCoreMask(int handle, out int preferredCore, out long affinityMask) { KThread thread = _process.HandleTable.GetKThread(handle); if (thread != null) { preferredCore = thread.PreferredCore; affinityMask = thread.AffinityMask; return KernelResult.Success; } else { preferredCore = 0; affinityMask = 0; return KernelResult.InvalidHandle; } } public KernelResult SetThreadCoreMask64(int handle, int preferredCore, long affinityMask) { return SetThreadCoreMask(handle, preferredCore, affinityMask); } private KernelResult SetThreadCoreMask(int handle, int preferredCore, long affinityMask) { KProcess currentProcess = _system.Scheduler.GetCurrentProcess(); if (preferredCore == -2) { preferredCore = currentProcess.DefaultCpuCore; affinityMask = 1 << preferredCore; } else { if ((currentProcess.Capabilities.AllowedCpuCoresMask | affinityMask) != currentProcess.Capabilities.AllowedCpuCoresMask) { return KernelResult.InvalidCpuCore; } if (affinityMask == 0) { return KernelResult.InvalidCombination; } if ((uint)preferredCore > 3) { if ((preferredCore | 2) != -1) { return KernelResult.InvalidCpuCore; } } else if ((affinityMask & (1 << preferredCore)) == 0) { return KernelResult.InvalidCombination; } } KThread thread = _process.HandleTable.GetKThread(handle); if (thread == null) { return KernelResult.InvalidHandle; } return thread.SetCoreAndAffinityMask(preferredCore, affinityMask); } public int GetCurrentProcessorNumber64() { return _system.Scheduler.GetCurrentThread().CurrentCore; } public KernelResult GetThreadId64(int handle, out long threadUid) { return GetThreadId(handle, out threadUid); } private KernelResult GetThreadId(int handle, out long threadUid) { KThread thread = _process.HandleTable.GetKThread(handle); if (thread != null) { threadUid = thread.ThreadUid; return KernelResult.Success; } else { threadUid = 0; return KernelResult.InvalidHandle; } } public KernelResult SetThreadActivity64(int handle, bool pause) { return SetThreadActivity(handle, pause); } private KernelResult SetThreadActivity(int handle, bool pause) { KThread thread = _process.HandleTable.GetObject(handle); if (thread == null) { return KernelResult.InvalidHandle; } if (thread.Owner != _system.Scheduler.GetCurrentProcess()) { return KernelResult.InvalidHandle; } if (thread == _system.Scheduler.GetCurrentThread()) { return KernelResult.InvalidThread; } return thread.SetActivity(pause); } public KernelResult GetThreadContext364(ulong address, int handle) { return GetThreadContext3(address, handle); } private KernelResult GetThreadContext3(ulong address, int handle) { KProcess currentProcess = _system.Scheduler.GetCurrentProcess(); KThread currentThread = _system.Scheduler.GetCurrentThread(); KThread thread = _process.HandleTable.GetObject(handle); if (thread == null) { return KernelResult.InvalidHandle; } if (thread.Owner != currentProcess) { return KernelResult.InvalidHandle; } if (currentThread == thread) { return KernelResult.InvalidThread; } _memory.WriteUInt64((long)address + 0x0, thread.Context.ThreadState.X0); _memory.WriteUInt64((long)address + 0x8, thread.Context.ThreadState.X1); _memory.WriteUInt64((long)address + 0x10, thread.Context.ThreadState.X2); _memory.WriteUInt64((long)address + 0x18, thread.Context.ThreadState.X3); _memory.WriteUInt64((long)address + 0x20, thread.Context.ThreadState.X4); _memory.WriteUInt64((long)address + 0x28, thread.Context.ThreadState.X5); _memory.WriteUInt64((long)address + 0x30, thread.Context.ThreadState.X6); _memory.WriteUInt64((long)address + 0x38, thread.Context.ThreadState.X7); _memory.WriteUInt64((long)address + 0x40, thread.Context.ThreadState.X8); _memory.WriteUInt64((long)address + 0x48, thread.Context.ThreadState.X9); _memory.WriteUInt64((long)address + 0x50, thread.Context.ThreadState.X10); _memory.WriteUInt64((long)address + 0x58, thread.Context.ThreadState.X11); _memory.WriteUInt64((long)address + 0x60, thread.Context.ThreadState.X12); _memory.WriteUInt64((long)address + 0x68, thread.Context.ThreadState.X13); _memory.WriteUInt64((long)address + 0x70, thread.Context.ThreadState.X14); _memory.WriteUInt64((long)address + 0x78, thread.Context.ThreadState.X15); _memory.WriteUInt64((long)address + 0x80, thread.Context.ThreadState.X16); _memory.WriteUInt64((long)address + 0x88, thread.Context.ThreadState.X17); _memory.WriteUInt64((long)address + 0x90, thread.Context.ThreadState.X18); _memory.WriteUInt64((long)address + 0x98, thread.Context.ThreadState.X19); _memory.WriteUInt64((long)address + 0xa0, thread.Context.ThreadState.X20); _memory.WriteUInt64((long)address + 0xa8, thread.Context.ThreadState.X21); _memory.WriteUInt64((long)address + 0xb0, thread.Context.ThreadState.X22); _memory.WriteUInt64((long)address + 0xb8, thread.Context.ThreadState.X23); _memory.WriteUInt64((long)address + 0xc0, thread.Context.ThreadState.X24); _memory.WriteUInt64((long)address + 0xc8, thread.Context.ThreadState.X25); _memory.WriteUInt64((long)address + 0xd0, thread.Context.ThreadState.X26); _memory.WriteUInt64((long)address + 0xd8, thread.Context.ThreadState.X27); _memory.WriteUInt64((long)address + 0xe0, thread.Context.ThreadState.X28); _memory.WriteUInt64((long)address + 0xe8, thread.Context.ThreadState.X29); _memory.WriteUInt64((long)address + 0xf0, thread.Context.ThreadState.X30); _memory.WriteUInt64((long)address + 0xf8, thread.Context.ThreadState.X31); _memory.WriteInt64((long)address + 0x100, thread.LastPc); _memory.WriteUInt64((long)address + 0x108, (ulong)thread.Context.ThreadState.Psr); _memory.WriteVector128((long)address + 0x110, thread.Context.ThreadState.V0); _memory.WriteVector128((long)address + 0x120, thread.Context.ThreadState.V1); _memory.WriteVector128((long)address + 0x130, thread.Context.ThreadState.V2); _memory.WriteVector128((long)address + 0x140, thread.Context.ThreadState.V3); _memory.WriteVector128((long)address + 0x150, thread.Context.ThreadState.V4); _memory.WriteVector128((long)address + 0x160, thread.Context.ThreadState.V5); _memory.WriteVector128((long)address + 0x170, thread.Context.ThreadState.V6); _memory.WriteVector128((long)address + 0x180, thread.Context.ThreadState.V7); _memory.WriteVector128((long)address + 0x190, thread.Context.ThreadState.V8); _memory.WriteVector128((long)address + 0x1a0, thread.Context.ThreadState.V9); _memory.WriteVector128((long)address + 0x1b0, thread.Context.ThreadState.V10); _memory.WriteVector128((long)address + 0x1c0, thread.Context.ThreadState.V11); _memory.WriteVector128((long)address + 0x1d0, thread.Context.ThreadState.V12); _memory.WriteVector128((long)address + 0x1e0, thread.Context.ThreadState.V13); _memory.WriteVector128((long)address + 0x1f0, thread.Context.ThreadState.V14); _memory.WriteVector128((long)address + 0x200, thread.Context.ThreadState.V15); _memory.WriteVector128((long)address + 0x210, thread.Context.ThreadState.V16); _memory.WriteVector128((long)address + 0x220, thread.Context.ThreadState.V17); _memory.WriteVector128((long)address + 0x230, thread.Context.ThreadState.V18); _memory.WriteVector128((long)address + 0x240, thread.Context.ThreadState.V19); _memory.WriteVector128((long)address + 0x250, thread.Context.ThreadState.V20); _memory.WriteVector128((long)address + 0x260, thread.Context.ThreadState.V21); _memory.WriteVector128((long)address + 0x270, thread.Context.ThreadState.V22); _memory.WriteVector128((long)address + 0x280, thread.Context.ThreadState.V23); _memory.WriteVector128((long)address + 0x290, thread.Context.ThreadState.V24); _memory.WriteVector128((long)address + 0x2a0, thread.Context.ThreadState.V25); _memory.WriteVector128((long)address + 0x2b0, thread.Context.ThreadState.V26); _memory.WriteVector128((long)address + 0x2c0, thread.Context.ThreadState.V27); _memory.WriteVector128((long)address + 0x2d0, thread.Context.ThreadState.V28); _memory.WriteVector128((long)address + 0x2e0, thread.Context.ThreadState.V29); _memory.WriteVector128((long)address + 0x2f0, thread.Context.ThreadState.V30); _memory.WriteVector128((long)address + 0x300, thread.Context.ThreadState.V31); _memory.WriteInt32((long)address + 0x310, thread.Context.ThreadState.Fpcr); _memory.WriteInt32((long)address + 0x314, thread.Context.ThreadState.Fpsr); _memory.WriteInt64((long)address + 0x318, thread.Context.ThreadState.Tpidr); return KernelResult.Success; } } }