using Ryujinx.Graphics.Shader.CodeGen.Glsl; using Ryujinx.Graphics.Shader.Decoders; using Ryujinx.Graphics.Shader.IntermediateRepresentation; using Ryujinx.Graphics.Shader.StructuredIr; using Ryujinx.Graphics.Shader.Translation.Optimizations; using System; using System.Collections.Generic; using static Ryujinx.Graphics.Shader.IntermediateRepresentation.OperandHelper; namespace Ryujinx.Graphics.Shader.Translation { public static class Translator { private const int HeaderSize = 0x50; private struct FunctionCode { public Operation[] Code { get; } public FunctionCode(Operation[] code) { Code = code; } } public static ShaderProgram Translate( ulong address, IGpuAccessor gpuAccessor, TranslationFlags flags, TranslationCounts counts = null) { counts ??= new TranslationCounts(); return Translate(DecodeShader(address, gpuAccessor, flags, counts, out ShaderConfig config), config); } public static ShaderProgram Translate( ulong addressA, ulong addressB, IGpuAccessor gpuAccessor, TranslationFlags flags, TranslationCounts counts = null) { counts ??= new TranslationCounts(); FunctionCode[] funcA = DecodeShader(addressA, gpuAccessor, flags | TranslationFlags.VertexA, counts, out ShaderConfig configA); FunctionCode[] funcB = DecodeShader(addressB, gpuAccessor, flags, counts, out ShaderConfig config); config.SetUsedFeature(configA.UsedFeatures); return Translate(Combine(funcA, funcB), config, configA.Size); } private static ShaderProgram Translate(FunctionCode[] functions, ShaderConfig config, int sizeA = 0) { var cfgs = new ControlFlowGraph[functions.Length]; var frus = new RegisterUsage.FunctionRegisterUsage[functions.Length]; for (int i = 0; i < functions.Length; i++) { cfgs[i] = ControlFlowGraph.Create(functions[i].Code); if (i != 0) { frus[i] = RegisterUsage.RunPass(cfgs[i]); } } Function[] funcs = new Function[functions.Length]; for (int i = 0; i < functions.Length; i++) { var cfg = cfgs[i]; int inArgumentsCount = 0; int outArgumentsCount = 0; if (i != 0) { var fru = frus[i]; inArgumentsCount = fru.InArguments.Length; outArgumentsCount = fru.OutArguments.Length; } if (cfg.Blocks.Length != 0) { RegisterUsage.FixupCalls(cfg.Blocks, frus); Dominance.FindDominators(cfg); Dominance.FindDominanceFrontiers(cfg.Blocks); Ssa.Rename(cfg.Blocks); Optimizer.RunPass(cfg.Blocks, config); Rewriter.RunPass(cfg.Blocks, config); } funcs[i] = new Function(cfg.Blocks, $"fun{i}", false, inArgumentsCount, outArgumentsCount); } StructuredProgramInfo sInfo = StructuredProgram.MakeStructuredProgram(funcs, config); GlslProgram program = GlslGenerator.Generate(sInfo, config); ShaderProgramInfo spInfo = new ShaderProgramInfo( program.CBufferDescriptors, program.SBufferDescriptors, program.TextureDescriptors, program.ImageDescriptors, sInfo.UsesInstanceId); string glslCode = program.Code; return new ShaderProgram(spInfo, config.Stage, glslCode, config.Size, sizeA); } private static FunctionCode[] DecodeShader( ulong address, IGpuAccessor gpuAccessor, TranslationFlags flags, TranslationCounts counts, out ShaderConfig config) { Block[][] cfg; if ((flags & TranslationFlags.Compute) != 0) { config = new ShaderConfig(gpuAccessor, flags, counts); cfg = Decoder.Decode(gpuAccessor, address); } else { config = new ShaderConfig(new ShaderHeader(gpuAccessor, address), gpuAccessor, flags, counts); cfg = Decoder.Decode(gpuAccessor, address + HeaderSize); } if (cfg == null) { gpuAccessor.Log("Invalid branch detected, failed to build CFG."); return Array.Empty(); } Dictionary funcIds = new Dictionary(); for (int funcIndex = 0; funcIndex < cfg.Length; funcIndex++) { funcIds.Add(cfg[funcIndex][0].Address, funcIndex); } List funcs = new List(); ulong maxEndAddress = 0; for (int funcIndex = 0; funcIndex < cfg.Length; funcIndex++) { EmitterContext context = new EmitterContext(config, funcIndex != 0, funcIds); for (int blkIndex = 0; blkIndex < cfg[funcIndex].Length; blkIndex++) { Block block = cfg[funcIndex][blkIndex]; if (maxEndAddress < block.EndAddress) { maxEndAddress = block.EndAddress; } context.CurrBlock = block; context.MarkLabel(context.GetLabel(block.Address)); EmitOps(context, block); } funcs.Add(new FunctionCode(context.GetOperations())); } config.SizeAdd((int)maxEndAddress + (flags.HasFlag(TranslationFlags.Compute) ? 0 : HeaderSize)); return funcs.ToArray(); } internal static void EmitOps(EmitterContext context, Block block) { for (int opIndex = 0; opIndex < block.OpCodes.Count; opIndex++) { OpCode op = block.OpCodes[opIndex]; if ((context.Config.Flags & TranslationFlags.DebugMode) != 0) { string instName; if (op.Emitter != null) { instName = op.Emitter.Method.Name; } else { instName = "???"; context.Config.GpuAccessor.Log($"Invalid instruction at 0x{op.Address:X6} (0x{op.RawOpCode:X16})."); } string dbgComment = $"0x{op.Address:X6}: 0x{op.RawOpCode:X16} {instName}"; context.Add(new CommentNode(dbgComment)); } if (op.NeverExecute) { continue; } Operand predSkipLbl = null; bool skipPredicateCheck = op is OpCodeBranch opBranch && !opBranch.PushTarget; if (op is OpCodeBranchPop opBranchPop) { // If the instruction is a SYNC or BRK instruction with only one // possible target address, then the instruction is basically // just a simple branch, we can generate code similar to branch // instructions, with the condition check on the branch itself. skipPredicateCheck = opBranchPop.Targets.Count < 2; } if (!(op.Predicate.IsPT || skipPredicateCheck)) { Operand label; if (opIndex == block.OpCodes.Count - 1 && block.Next != null) { label = context.GetLabel(block.Next.Address); } else { label = Label(); predSkipLbl = label; } Operand pred = Register(op.Predicate); if (op.InvertPredicate) { context.BranchIfTrue(label, pred); } else { context.BranchIfFalse(label, pred); } } context.CurrOp = op; op.Emitter?.Invoke(context); if (predSkipLbl != null) { context.MarkLabel(predSkipLbl); } } } private static FunctionCode[] Combine(FunctionCode[] a, FunctionCode[] b) { // Here we combine two shaders. // For shader A: // - All user attribute stores on shader A are turned into copies to a // temporary variable. It's assumed that shader B will consume them. // - All return instructions are turned into branch instructions, the // branch target being the start of the shader B code. // For shader B: // - All user attribute loads on shader B are turned into copies from a // temporary variable, as long that attribute is written by shader A. FunctionCode[] output = new FunctionCode[a.Length + b.Length - 1]; List ops = new List(a.Length + b.Length); Operand[] temps = new Operand[AttributeConsts.UserAttributesCount * 4]; Operand lblB = Label(); for (int index = 0; index < a[0].Code.Length; index++) { Operation operation = a[0].Code[index]; if (IsUserAttribute(operation.Dest)) { int tIndex = (operation.Dest.Value - AttributeConsts.UserAttributeBase) / 4; Operand temp = temps[tIndex]; if (temp == null) { temp = Local(); temps[tIndex] = temp; } operation.Dest = temp; } if (operation.Inst == Instruction.Return) { ops.Add(new Operation(Instruction.Branch, lblB)); } else { ops.Add(operation); } } ops.Add(new Operation(Instruction.MarkLabel, lblB)); for (int index = 0; index < b[0].Code.Length; index++) { Operation operation = b[0].Code[index]; for (int srcIndex = 0; srcIndex < operation.SourcesCount; srcIndex++) { Operand src = operation.GetSource(srcIndex); if (IsUserAttribute(src)) { Operand temp = temps[(src.Value - AttributeConsts.UserAttributeBase) / 4]; if (temp != null) { operation.SetSource(srcIndex, temp); } } } ops.Add(operation); } output[0] = new FunctionCode(ops.ToArray()); for (int i = 1; i < a.Length; i++) { output[i] = a[i]; } for (int i = 1; i < b.Length; i++) { output[a.Length + i - 1] = b[i]; } return output; } private static bool IsUserAttribute(Operand operand) { return operand != null && operand.Type == OperandType.Attribute && operand.Value >= AttributeConsts.UserAttributeBase && operand.Value < AttributeConsts.UserAttributeEnd; } } }