using Ryujinx.Graphics.Gal; using System; using System.Collections.Generic; namespace Ryujinx.Core.Gpu { public class NvGpuEngine3d : INvGpuEngine { public int[] Registers { get; private set; } private NvGpu Gpu; private Dictionary Methods; private struct ConstBuffer { public bool Enabled; public long Position; public int Size; } private ConstBuffer[][] ConstBuffers; private HashSet FrameBuffers; public NvGpuEngine3d(NvGpu Gpu) { this.Gpu = Gpu; Registers = new int[0xe00]; Methods = new Dictionary(); void AddMethod(int Meth, int Count, int Stride, NvGpuMethod Method) { while (Count-- > 0) { Methods.Add(Meth, Method); Meth += Stride; } } AddMethod(0x585, 1, 1, VertexEndGl); AddMethod(0x674, 1, 1, ClearBuffers); AddMethod(0x6c3, 1, 1, QueryControl); AddMethod(0x8e4, 16, 1, CbData); AddMethod(0x904, 5, 8, CbBind); ConstBuffers = new ConstBuffer[6][]; for (int Index = 0; Index < ConstBuffers.Length; Index++) { ConstBuffers[Index] = new ConstBuffer[18]; } FrameBuffers = new HashSet(); } public void CallMethod(NvGpuVmm Vmm, NvGpuPBEntry PBEntry) { if (Methods.TryGetValue(PBEntry.Method, out NvGpuMethod Method)) { Method(Vmm, PBEntry); } else { WriteRegister(PBEntry); } } private void VertexEndGl(NvGpuVmm Vmm, NvGpuPBEntry PBEntry) { SetFrameBuffer(Vmm, 0); long[] Tags = UploadShaders(Vmm); Gpu.Renderer.BindProgram(); SetAlphaBlending(); UploadTextures(Vmm, Tags); UploadUniforms(Vmm); UploadVertexArrays(Vmm); } private void ClearBuffers(NvGpuVmm Vmm, NvGpuPBEntry PBEntry) { int Arg0 = PBEntry.Arguments[0]; int FbIndex = (Arg0 >> 6) & 0xf; int Layer = (Arg0 >> 10) & 0x3ff; GalClearBufferFlags Flags = (GalClearBufferFlags)(Arg0 & 0x3f); SetFrameBuffer(Vmm, 0); //TODO: Enable this once the frame buffer problems are fixed. //Gpu.Renderer.ClearBuffers(Layer, Flags); } private void SetFrameBuffer(NvGpuVmm Vmm, int FbIndex) { long VA = MakeInt64From2xInt32(NvGpuEngine3dReg.FrameBufferNAddress + FbIndex * 0x10); long PA = Vmm.GetPhysicalAddress(VA); FrameBuffers.Add(PA); int Width = ReadRegister(NvGpuEngine3dReg.FrameBufferNWidth + FbIndex * 0x10); int Height = ReadRegister(NvGpuEngine3dReg.FrameBufferNHeight + FbIndex * 0x10); //Note: Using the Width/Height results seems to give incorrect results. //Maybe the size of all frame buffers is hardcoded to screen size? This seems unlikely. Gpu.Renderer.CreateFrameBuffer(PA, 1280, 720); Gpu.Renderer.BindFrameBuffer(PA); } private long[] UploadShaders(NvGpuVmm Vmm) { long[] Tags = new long[5]; long BasePosition = MakeInt64From2xInt32(NvGpuEngine3dReg.ShaderAddress); for (int Index = 0; Index < 6; Index++) { int Control = ReadRegister(NvGpuEngine3dReg.ShaderNControl + Index * 0x10); int Offset = ReadRegister(NvGpuEngine3dReg.ShaderNOffset + Index * 0x10); //Note: Vertex Program (B) is always enabled. bool Enable = (Control & 1) != 0 || Index == 1; if (!Enable) { continue; } long Tag = BasePosition + (uint)Offset; //TODO: Find a better way to calculate the size. int Size = 0x20000; byte[] Code = Vmm.ReadBytes(Tag, Size); GalShaderType ShaderType = GetTypeFromProgram(Index); Tags[(int)ShaderType] = Tag; Gpu.Renderer.CreateShader(Tag, ShaderType, Code); Gpu.Renderer.BindShader(Tag); } int RawSX = ReadRegister(NvGpuEngine3dReg.ViewportScaleX); int RawSY = ReadRegister(NvGpuEngine3dReg.ViewportScaleY); float SX = BitConverter.Int32BitsToSingle(RawSX); float SY = BitConverter.Int32BitsToSingle(RawSY); float SignX = MathF.Sign(SX); float SignY = MathF.Sign(SY); Gpu.Renderer.SetUniform2F(GalConsts.FlipUniformName, SignX, SignY); return Tags; } private static GalShaderType GetTypeFromProgram(int Program) { switch (Program) { case 0: case 1: return GalShaderType.Vertex; case 2: return GalShaderType.TessControl; case 3: return GalShaderType.TessEvaluation; case 4: return GalShaderType.Geometry; case 5: return GalShaderType.Fragment; } throw new ArgumentOutOfRangeException(nameof(Program)); } private void SetAlphaBlending() { //TODO: Support independent blend properly. bool Enable = (ReadRegister(NvGpuEngine3dReg.IBlendNEnable) & 1) != 0; Gpu.Renderer.SetBlendEnable(Enable); bool BlendSeparateAlpha = (ReadRegister(NvGpuEngine3dReg.IBlendNSeparateAlpha) & 1) != 0; GalBlendEquation EquationRgb = (GalBlendEquation)ReadRegister(NvGpuEngine3dReg.IBlendNEquationRgb); GalBlendFactor FuncSrcRgb = (GalBlendFactor)ReadRegister(NvGpuEngine3dReg.IBlendNFuncSrcRgb); GalBlendFactor FuncDstRgb = (GalBlendFactor)ReadRegister(NvGpuEngine3dReg.IBlendNFuncDstRgb); if (BlendSeparateAlpha) { GalBlendEquation EquationAlpha = (GalBlendEquation)ReadRegister(NvGpuEngine3dReg.IBlendNEquationAlpha); GalBlendFactor FuncSrcAlpha = (GalBlendFactor)ReadRegister(NvGpuEngine3dReg.IBlendNFuncSrcAlpha); GalBlendFactor FuncDstAlpha = (GalBlendFactor)ReadRegister(NvGpuEngine3dReg.IBlendNFuncDstAlpha); Gpu.Renderer.SetBlendSeparate( EquationRgb, EquationAlpha, FuncSrcRgb, FuncDstRgb, FuncSrcAlpha, FuncDstAlpha); } else { Gpu.Renderer.SetBlend(EquationRgb, FuncSrcRgb, FuncDstRgb); } } private void UploadTextures(NvGpuVmm Vmm, long[] Tags) { long BaseShPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.ShaderAddress); int TextureCbIndex = ReadRegister(NvGpuEngine3dReg.TextureCbIndex); //Note: On the emulator renderer, Texture Unit 0 is //reserved for drawing the frame buffer. int TexIndex = 1; for (int Index = 0; Index < Tags.Length; Index++) { foreach (ShaderDeclInfo DeclInfo in Gpu.Renderer.GetTextureUsage(Tags[Index])) { long Position = ConstBuffers[Index][TextureCbIndex].Position; UploadTexture(Vmm, Position, TexIndex, DeclInfo.Index); Gpu.Renderer.SetUniform1(DeclInfo.Name, TexIndex); TexIndex++; } } } private void UploadTexture(NvGpuVmm Vmm, long BasePosition, int TexIndex, int HndIndex) { long Position = BasePosition + HndIndex * 4; int TextureHandle = Vmm.ReadInt32(Position); int TicIndex = (TextureHandle >> 0) & 0xfffff; int TscIndex = (TextureHandle >> 20) & 0xfff; long TicPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.TexHeaderPoolOffset); long TscPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.TexSamplerPoolOffset); TicPosition += TicIndex * 0x20; TscPosition += TscIndex * 0x20; GalTextureSampler Sampler = TextureFactory.MakeSampler(Gpu, Vmm, TscPosition); long TextureAddress = Vmm.ReadInt64(TicPosition + 4) & 0xffffffffffff; TextureAddress = Vmm.GetPhysicalAddress(TextureAddress); if (IsFrameBufferPosition(TextureAddress)) { //This texture is a frame buffer texture, //we shouldn't read anything from memory and bind //the frame buffer texture instead, since we're not //really writing anything to memory. Gpu.Renderer.BindFrameBufferTexture(TextureAddress, TexIndex, Sampler); } else { GalTexture Texture = TextureFactory.MakeTexture(Gpu, Vmm, TicPosition); Gpu.Renderer.SetTextureAndSampler(TexIndex, Texture, Sampler); Gpu.Renderer.BindTexture(TexIndex); } } private void UploadUniforms(NvGpuVmm Vmm) { long BasePosition = MakeInt64From2xInt32(NvGpuEngine3dReg.ShaderAddress); for (int Index = 0; Index < 5; Index++) { int Control = ReadRegister(NvGpuEngine3dReg.ShaderNControl + (Index + 1) * 0x10); int Offset = ReadRegister(NvGpuEngine3dReg.ShaderNOffset + (Index + 1) * 0x10); //Note: Vertex Program (B) is always enabled. bool Enable = (Control & 1) != 0 || Index == 0; if (!Enable) { continue; } for (int Cbuf = 0; Cbuf < ConstBuffers.Length; Cbuf++) { ConstBuffer Cb = ConstBuffers[Index][Cbuf]; if (Cb.Enabled) { byte[] Data = Vmm.ReadBytes(Cb.Position, (uint)Cb.Size); Gpu.Renderer.SetConstBuffer(BasePosition + (uint)Offset, Cbuf, Data); } } } } private void UploadVertexArrays(NvGpuVmm Vmm) { long IndexPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.IndexArrayAddress); int IndexSize = ReadRegister(NvGpuEngine3dReg.IndexArrayFormat); int IndexFirst = ReadRegister(NvGpuEngine3dReg.IndexBatchFirst); int IndexCount = ReadRegister(NvGpuEngine3dReg.IndexBatchCount); GalIndexFormat IndexFormat = (GalIndexFormat)IndexSize; IndexSize = 1 << IndexSize; if (IndexSize > 4) { throw new InvalidOperationException(); } if (IndexSize != 0) { int BufferSize = IndexCount * IndexSize; byte[] Data = Vmm.ReadBytes(IndexPosition, BufferSize); Gpu.Renderer.SetIndexArray(Data, IndexFormat); } List[] Attribs = new List[32]; for (int Attr = 0; Attr < 16; Attr++) { int Packed = ReadRegister(NvGpuEngine3dReg.VertexAttribNFormat + Attr); int ArrayIndex = Packed & 0x1f; if (Attribs[ArrayIndex] == null) { Attribs[ArrayIndex] = new List(); } Attribs[ArrayIndex].Add(new GalVertexAttrib( Attr, ((Packed >> 6) & 0x1) != 0, (Packed >> 7) & 0x3fff, (GalVertexAttribSize)((Packed >> 21) & 0x3f), (GalVertexAttribType)((Packed >> 27) & 0x7), ((Packed >> 31) & 0x1) != 0)); } for (int Index = 0; Index < 32; Index++) { int VertexFirst = ReadRegister(NvGpuEngine3dReg.VertexArrayFirst); int VertexCount = ReadRegister(NvGpuEngine3dReg.VertexArrayCount); int Control = ReadRegister(NvGpuEngine3dReg.VertexArrayNControl + Index * 4); bool Enable = (Control & 0x1000) != 0; long VertexPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.VertexArrayNAddress + Index * 4); if (!Enable) { continue; } int Stride = Control & 0xfff; long Size = 0; if (IndexCount != 0) { Size = GetVertexCountFromIndexBuffer( Vmm, IndexPosition, IndexCount, IndexSize); } else { Size = VertexCount; } //TODO: Support cases where the Stride is 0. //In this case, we need to use the size of the attribute. Size *= Stride; byte[] Data = Vmm.ReadBytes(VertexPosition, Size); GalVertexAttrib[] AttribArray = Attribs[Index]?.ToArray() ?? new GalVertexAttrib[0]; Gpu.Renderer.SetVertexArray(Index, Stride, Data, AttribArray); int PrimCtrl = ReadRegister(NvGpuEngine3dReg.VertexBeginGl); GalPrimitiveType PrimType = (GalPrimitiveType)(PrimCtrl & 0xffff); if (IndexCount != 0) { Gpu.Renderer.DrawElements(Index, IndexFirst, PrimType); } else { Gpu.Renderer.DrawArrays(Index, VertexFirst, VertexCount, PrimType); } } } private int GetVertexCountFromIndexBuffer( NvGpuVmm Vmm, long IndexPosition, int IndexCount, int IndexSize) { int MaxIndex = -1; if (IndexSize == 2) { while (IndexCount -- > 0) { ushort Value = Vmm.ReadUInt16(IndexPosition); IndexPosition += 2; if (MaxIndex < Value) { MaxIndex = Value; } } } else if (IndexSize == 1) { while (IndexCount -- > 0) { byte Value = Vmm.ReadByte(IndexPosition++); if (MaxIndex < Value) { MaxIndex = Value; } } } else if (IndexSize == 4) { while (IndexCount -- > 0) { uint Value = Vmm.ReadUInt32(IndexPosition); IndexPosition += 2; if (MaxIndex < Value) { MaxIndex = (int)Value; } } } else { throw new ArgumentOutOfRangeException(nameof(IndexSize)); } return MaxIndex + 1; } private void QueryControl(NvGpuVmm Vmm, NvGpuPBEntry PBEntry) { long Position = MakeInt64From2xInt32(NvGpuEngine3dReg.QueryAddress); int Seq = Registers[(int)NvGpuEngine3dReg.QuerySequence]; int Ctrl = Registers[(int)NvGpuEngine3dReg.QueryControl]; int Mode = Ctrl & 3; if (Mode == 0) { //Write mode. Vmm.WriteInt32(Position, Seq); } WriteRegister(PBEntry); } private void CbData(NvGpuVmm Vmm, NvGpuPBEntry PBEntry) { long Position = MakeInt64From2xInt32(NvGpuEngine3dReg.ConstBufferAddress); int Offset = ReadRegister(NvGpuEngine3dReg.ConstBufferOffset); foreach (int Arg in PBEntry.Arguments) { Vmm.WriteInt32(Position + Offset, Arg); Offset += 4; } WriteRegister(NvGpuEngine3dReg.ConstBufferOffset, Offset); } private void CbBind(NvGpuVmm Vmm, NvGpuPBEntry PBEntry) { int Stage = (PBEntry.Method - 0x904) >> 3; int Index = PBEntry.Arguments[0]; bool Enabled = (Index & 1) != 0; Index = (Index >> 4) & 0x1f; long Position = MakeInt64From2xInt32(NvGpuEngine3dReg.ConstBufferAddress); ConstBuffers[Stage][Index].Position = Position; ConstBuffers[Stage][Index].Enabled = Enabled; ConstBuffers[Stage][Index].Size = ReadRegister(NvGpuEngine3dReg.ConstBufferSize); } private long MakeInt64From2xInt32(NvGpuEngine3dReg Reg) { return (long)Registers[(int)Reg + 0] << 32 | (uint)Registers[(int)Reg + 1]; } private void WriteRegister(NvGpuPBEntry PBEntry) { int ArgsCount = PBEntry.Arguments.Count; if (ArgsCount > 0) { Registers[PBEntry.Method] = PBEntry.Arguments[ArgsCount - 1]; } } private int ReadRegister(NvGpuEngine3dReg Reg) { return Registers[(int)Reg]; } private void WriteRegister(NvGpuEngine3dReg Reg, int Value) { Registers[(int)Reg] = Value; } public bool IsFrameBufferPosition(long Position) { return FrameBuffers.Contains(Position); } } }