using ChocolArm64.Memory; using Ryujinx.Graphics.Gal; using System; using System.Collections.Generic; namespace Ryujinx.Graphics.Gpu { public class NvGpuEngine3d : INvGpuEngine { public int[] Registers { get; private set; } private NsGpu Gpu; private Dictionary Methods; private struct ConstBuffer { public bool Enabled; public long Position; public int Size; } private ConstBuffer[] ConstBuffers; private HashSet FrameBuffers; public NvGpuEngine3d(NsGpu Gpu) { this.Gpu = Gpu; Registers = new int[0xe00]; Methods = new Dictionary(); void AddMethod(int Meth, int Count, int Stride, NvGpuMethod Method) { while (Count-- > 0) { Methods.Add(Meth, Method); Meth += Stride; } } AddMethod(0x585, 1, 1, VertexEndGl); AddMethod(0x674, 1, 1, ClearBuffers); AddMethod(0x6c3, 1, 1, QueryControl); AddMethod(0x8e4, 16, 1, CbData); AddMethod(0x904, 1, 1, CbBind); ConstBuffers = new ConstBuffer[18]; FrameBuffers = new HashSet(); } public void CallMethod(AMemory Memory, NsGpuPBEntry PBEntry) { if (Methods.TryGetValue(PBEntry.Method, out NvGpuMethod Method)) { Method(Memory, PBEntry); } else { WriteRegister(PBEntry); } } private void VertexEndGl(AMemory Memory, NsGpuPBEntry PBEntry) { SetFrameBuffer(0); long[] Tags = UploadShaders(Memory); Gpu.Renderer.BindProgram(); SetAlphaBlending(); UploadTextures(Memory, Tags); UploadUniforms(Memory); UploadVertexArrays(Memory); } private void ClearBuffers(AMemory Memory, NsGpuPBEntry PBEntry) { int Arg0 = PBEntry.Arguments[0]; int FbIndex = (Arg0 >> 6) & 0xf; int Layer = (Arg0 >> 10) & 0x3ff; GalClearBufferFlags Flags = (GalClearBufferFlags)(Arg0 & 0x3f); SetFrameBuffer(0); //TODO: Enable this once the frame buffer problems are fixed. //Gpu.Renderer.ClearBuffers(Layer, Flags); } private void SetFrameBuffer(int FbIndex) { long Address = MakeInt64From2xInt32(NvGpuEngine3dReg.FrameBufferNAddress + FbIndex * 0x10); FrameBuffers.Add(Address); int Width = ReadRegister(NvGpuEngine3dReg.FrameBufferNWidth + FbIndex * 0x10); int Height = ReadRegister(NvGpuEngine3dReg.FrameBufferNHeight + FbIndex * 0x10); //Note: Using the Width/Height results seems to give incorrect results. //Maybe the size of all frame buffers is hardcoded to screen size? This seems unlikely. Gpu.Renderer.CreateFrameBuffer(Address, 1280, 720); Gpu.Renderer.BindFrameBuffer(Address); } private long[] UploadShaders(AMemory Memory) { long[] Tags = new long[5]; long BasePosition = MakeInt64From2xInt32(NvGpuEngine3dReg.ShaderAddress); for (int Index = 0; Index < 6; Index++) { int Control = ReadRegister(NvGpuEngine3dReg.ShaderNControl + Index * 0x10); int Offset = ReadRegister(NvGpuEngine3dReg.ShaderNOffset + Index * 0x10); //Note: Vertex Program (B) is always enabled. bool Enable = (Control & 1) != 0 || Index == 1; if (!Enable) { continue; } long Tag = BasePosition + (uint)Offset; long Position = Gpu.GetCpuAddr(Tag); //TODO: Find a better way to calculate the size. int Size = 0x20000; byte[] Code = AMemoryHelper.ReadBytes(Memory, Position, (uint)Size); GalShaderType ShaderType = GetTypeFromProgram(Index); Tags[(int)ShaderType] = Tag; Gpu.Renderer.CreateShader(Tag, ShaderType, Code); Gpu.Renderer.BindShader(Tag); } int RawSX = ReadRegister(NvGpuEngine3dReg.ViewportScaleX); int RawSY = ReadRegister(NvGpuEngine3dReg.ViewportScaleY); float SX = BitConverter.Int32BitsToSingle(RawSX); float SY = BitConverter.Int32BitsToSingle(RawSY); float SignX = MathF.Sign(SX); float SignY = MathF.Sign(SY); Gpu.Renderer.SetUniform2F(GalConsts.FlipUniformName, SignX, SignY); return Tags; } private static GalShaderType GetTypeFromProgram(int Program) { switch (Program) { case 0: case 1: return GalShaderType.Vertex; case 2: return GalShaderType.TessControl; case 3: return GalShaderType.TessEvaluation; case 4: return GalShaderType.Geometry; case 5: return GalShaderType.Fragment; } throw new ArgumentOutOfRangeException(nameof(Program)); } private void SetAlphaBlending() { //TODO: Support independent blend properly. bool Enable = (ReadRegister(NvGpuEngine3dReg.IBlendNEnable) & 1) != 0; Gpu.Renderer.SetBlendEnable(Enable); bool BlendSeparateAlpha = (ReadRegister(NvGpuEngine3dReg.IBlendNSeparateAlpha) & 1) != 0; GalBlendEquation EquationRgb = (GalBlendEquation)ReadRegister(NvGpuEngine3dReg.IBlendNEquationRgb); GalBlendFactor FuncSrcRgb = (GalBlendFactor)ReadRegister(NvGpuEngine3dReg.IBlendNFuncSrcRgb); GalBlendFactor FuncDstRgb = (GalBlendFactor)ReadRegister(NvGpuEngine3dReg.IBlendNFuncDstRgb); if (BlendSeparateAlpha) { GalBlendEquation EquationAlpha = (GalBlendEquation)ReadRegister(NvGpuEngine3dReg.IBlendNEquationAlpha); GalBlendFactor FuncSrcAlpha = (GalBlendFactor)ReadRegister(NvGpuEngine3dReg.IBlendNFuncSrcAlpha); GalBlendFactor FuncDstAlpha = (GalBlendFactor)ReadRegister(NvGpuEngine3dReg.IBlendNFuncDstAlpha); Gpu.Renderer.SetBlendSeparate( EquationRgb, EquationAlpha, FuncSrcRgb, FuncDstRgb, FuncSrcAlpha, FuncDstAlpha); } else { Gpu.Renderer.SetBlend(EquationRgb, FuncSrcRgb, FuncDstRgb); } } private void UploadTextures(AMemory Memory, long[] Tags) { long BaseShPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.ShaderAddress); int TextureCbIndex = ReadRegister(NvGpuEngine3dReg.TextureCbIndex); long BasePosition = ConstBuffers[TextureCbIndex].Position; long Size = (uint)ConstBuffers[TextureCbIndex].Size; //Note: On the emulator renderer, Texture Unit 0 is //reserved for drawing the frame buffer. int TexIndex = 1; for (int Index = 0; Index < Tags.Length; Index++) { foreach (ShaderDeclInfo DeclInfo in Gpu.Renderer.GetTextureUsage(Tags[Index])) { long Position = BasePosition + Index * Size; UploadTexture(Memory, Position, TexIndex, DeclInfo.Index); Gpu.Renderer.SetUniform1(DeclInfo.Name, TexIndex); TexIndex++; } } } private void UploadTexture(AMemory Memory, long BasePosition, int TexIndex, int HndIndex) { long Position = BasePosition + HndIndex * 4; int TextureHandle = Memory.ReadInt32(Position); int TicIndex = (TextureHandle >> 0) & 0xfffff; int TscIndex = (TextureHandle >> 20) & 0xfff; TryGetCpuAddr(NvGpuEngine3dReg.TexHeaderPoolOffset, out long TicPosition); TryGetCpuAddr(NvGpuEngine3dReg.TexSamplerPoolOffset, out long TscPosition); TicPosition += TicIndex * 0x20; TscPosition += TscIndex * 0x20; GalTextureSampler Sampler = TextureFactory.MakeSampler(Gpu, Memory, TscPosition); long TextureAddress = Memory.ReadInt64(TicPosition + 4) & 0xffffffffffff; if (FrameBuffers.Contains(TextureAddress)) { //This texture is a frame buffer texture, //we shouldn't read anything from memory and bind //the frame buffer texture instead, since we're not //really writing anything to memory. Gpu.Renderer.BindFrameBufferTexture(TextureAddress, TexIndex, Sampler); } else { GalTexture Texture = TextureFactory.MakeTexture(Gpu, Memory, TicPosition); Gpu.Renderer.SetTextureAndSampler(TexIndex, Texture, Sampler); Gpu.Renderer.BindTexture(TexIndex); } } private void UploadUniforms(AMemory Memory) { long BasePosition = MakeInt64From2xInt32(NvGpuEngine3dReg.ShaderAddress); for (int Index = 0; Index < 5; Index++) { int Control = ReadRegister(NvGpuEngine3dReg.ShaderNControl + (Index + 1) * 0x10); int Offset = ReadRegister(NvGpuEngine3dReg.ShaderNOffset + (Index + 1) * 0x10); //Note: Vertex Program (B) is always enabled. bool Enable = (Control & 1) != 0 || Index == 0; if (!Enable) { continue; } for (int Cbuf = 0; Cbuf < ConstBuffers.Length; Cbuf++) { ConstBuffer Cb = ConstBuffers[Cbuf]; if (Cb.Enabled) { long CbPosition = Cb.Position + Index * Cb.Size; byte[] Data = AMemoryHelper.ReadBytes(Memory, CbPosition, (uint)Cb.Size); Gpu.Renderer.SetConstBuffer(BasePosition + (uint)Offset, Cbuf, Data); } } } } private void UploadVertexArrays(AMemory Memory) { long IndexPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.IndexArrayAddress); int IndexSize = ReadRegister(NvGpuEngine3dReg.IndexArrayFormat); int IndexFirst = ReadRegister(NvGpuEngine3dReg.IndexBatchFirst); int IndexCount = ReadRegister(NvGpuEngine3dReg.IndexBatchCount); GalIndexFormat IndexFormat = (GalIndexFormat)IndexSize; IndexSize = 1 << IndexSize; if (IndexSize > 4) { throw new InvalidOperationException(); } if (IndexSize != 0) { IndexPosition = Gpu.GetCpuAddr(IndexPosition); int BufferSize = IndexCount * IndexSize; byte[] Data = AMemoryHelper.ReadBytes(Memory, IndexPosition, BufferSize); Gpu.Renderer.SetIndexArray(Data, IndexFormat); } List[] Attribs = new List[32]; for (int Attr = 0; Attr < 16; Attr++) { int Packed = ReadRegister(NvGpuEngine3dReg.VertexAttribNFormat + Attr); int ArrayIndex = Packed & 0x1f; if (Attribs[ArrayIndex] == null) { Attribs[ArrayIndex] = new List(); } Attribs[ArrayIndex].Add(new GalVertexAttrib( ((Packed >> 6) & 0x1) != 0, (Packed >> 7) & 0x3fff, (GalVertexAttribSize)((Packed >> 21) & 0x3f), (GalVertexAttribType)((Packed >> 27) & 0x7), ((Packed >> 31) & 0x1) != 0)); } for (int Index = 0; Index < 32; Index++) { int VertexFirst = ReadRegister(NvGpuEngine3dReg.VertexArrayFirst); int VertexCount = ReadRegister(NvGpuEngine3dReg.VertexArrayCount); int Control = ReadRegister(NvGpuEngine3dReg.VertexArrayNControl + Index * 4); bool Enable = (Control & 0x1000) != 0; if (!Enable) { continue; } long VertexPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.VertexArrayNAddress + Index * 4); long VertexEndPos = MakeInt64From2xInt32(NvGpuEngine3dReg.VertexArrayNEndAddr + Index * 4); long Size = (VertexEndPos - VertexPosition) + 1; int Stride = Control & 0xfff; VertexPosition = Gpu.GetCpuAddr(VertexPosition); byte[] Data = AMemoryHelper.ReadBytes(Memory, VertexPosition, Size); GalVertexAttrib[] AttribArray = Attribs[Index]?.ToArray() ?? new GalVertexAttrib[0]; Gpu.Renderer.SetVertexArray(Index, Stride, Data, AttribArray); int PrimCtrl = ReadRegister(NvGpuEngine3dReg.VertexBeginGl); GalPrimitiveType PrimType = (GalPrimitiveType)(PrimCtrl & 0xffff); if (IndexCount != 0) { Gpu.Renderer.DrawElements(Index, IndexFirst, PrimType); } else { Gpu.Renderer.DrawArrays(Index, VertexFirst, VertexCount, PrimType); } } } private void QueryControl(AMemory Memory, NsGpuPBEntry PBEntry) { if (TryGetCpuAddr(NvGpuEngine3dReg.QueryAddress, out long Position)) { int Seq = Registers[(int)NvGpuEngine3dReg.QuerySequence]; int Ctrl = Registers[(int)NvGpuEngine3dReg.QueryControl]; int Mode = Ctrl & 3; if (Mode == 0) { //Write mode. Memory.WriteInt32(Position, Seq); } } WriteRegister(PBEntry); } private void CbData(AMemory Memory, NsGpuPBEntry PBEntry) { if (TryGetCpuAddr(NvGpuEngine3dReg.ConstBufferNAddress, out long Position)) { int Offset = ReadRegister(NvGpuEngine3dReg.ConstBufferNOffset); foreach (int Arg in PBEntry.Arguments) { Memory.WriteInt32(Position + Offset, Arg); Offset += 4; } WriteRegister(NvGpuEngine3dReg.ConstBufferNOffset, Offset); } } private void CbBind(AMemory Memory, NsGpuPBEntry PBEntry) { int Index = PBEntry.Arguments[0]; bool Enabled = (Index & 1) != 0; Index = (Index >> 4) & 0x1f; if (TryGetCpuAddr(NvGpuEngine3dReg.ConstBufferNAddress, out long Position)) { ConstBuffers[Index].Position = Position; ConstBuffers[Index].Enabled = Enabled; ConstBuffers[Index].Size = ReadRegister(NvGpuEngine3dReg.ConstBufferNSize); } } private int ReadCb(AMemory Memory, int Cbuf, int Offset) { long Position = ConstBuffers[Cbuf].Position; int Value = Memory.ReadInt32(Position + Offset); return Value; } private bool TryGetCpuAddr(NvGpuEngine3dReg Reg, out long Position) { Position = MakeInt64From2xInt32(Reg); Position = Gpu.GetCpuAddr(Position); return Position != -1; } private long MakeInt64From2xInt32(NvGpuEngine3dReg Reg) { return (long)Registers[(int)Reg + 0] << 32 | (uint)Registers[(int)Reg + 1]; } private void WriteRegister(NsGpuPBEntry PBEntry) { int ArgsCount = PBEntry.Arguments.Count; if (ArgsCount > 0) { Registers[PBEntry.Method] = PBEntry.Arguments[ArgsCount - 1]; } } private int ReadRegister(NvGpuEngine3dReg Reg) { return Registers[(int)Reg]; } private void WriteRegister(NvGpuEngine3dReg Reg, int Value) { Registers[(int)Reg] = Value; } public bool IsFrameBufferPosition(long Position) { return FrameBuffers.Contains(Position); } } }