using ARMeilleure.Memory;
using Ryujinx.Cpu.Tracking;
using Ryujinx.Memory;
using Ryujinx.Memory.Tracking;
using System;
using System.Collections.Generic;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Threading;
namespace Ryujinx.Cpu
{
///
/// Represents a CPU memory manager.
///
public sealed class MemoryManager : IMemoryManager, IVirtualMemoryManager, IWritableBlock, IDisposable
{
public const int PageBits = 12;
public const int PageSize = 1 << PageBits;
public const int PageMask = PageSize - 1;
private const int PteSize = 8;
private readonly InvalidAccessHandler _invalidAccessHandler;
///
/// Address space width in bits.
///
public int AddressSpaceBits { get; }
private readonly ulong _addressSpaceSize;
private readonly MemoryBlock _backingMemory;
private readonly MemoryBlock _pageTable;
///
/// Page table base pointer.
///
public IntPtr PageTablePointer => _pageTable.Pointer;
public MemoryTracking Tracking { get; }
internal event Action UnmapEvent;
///
/// Creates a new instance of the memory manager.
///
/// Physical backing memory where virtual memory will be mapped to
/// Size of the address space
/// Optional function to handle invalid memory accesses
public MemoryManager(MemoryBlock backingMemory, ulong addressSpaceSize, InvalidAccessHandler invalidAccessHandler = null)
{
_invalidAccessHandler = invalidAccessHandler;
ulong asSize = PageSize;
int asBits = PageBits;
while (asSize < addressSpaceSize)
{
asSize <<= 1;
asBits++;
}
AddressSpaceBits = asBits;
_addressSpaceSize = asSize;
_backingMemory = backingMemory;
_pageTable = new MemoryBlock((asSize / PageSize) * PteSize);
Tracking = new MemoryTracking(this, backingMemory, PageSize);
Tracking.EnablePhysicalProtection = false; // Disabled for now, as protection is done in software.
}
///
/// Maps a virtual memory range into a physical memory range.
///
///
/// Addresses and size must be page aligned.
///
/// Virtual memory address
/// Physical memory address
/// Size to be mapped
public void Map(ulong va, ulong pa, ulong size)
{
ulong remainingSize = size;
ulong oVa = va;
ulong oPa = pa;
while (remainingSize != 0)
{
_pageTable.Write((va / PageSize) * PteSize, PaToPte(pa));
va += PageSize;
pa += PageSize;
remainingSize -= PageSize;
}
Tracking.Map(oVa, oPa, size);
}
///
/// Unmaps a previously mapped range of virtual memory.
///
/// Virtual address of the range to be unmapped
/// Size of the range to be unmapped
public void Unmap(ulong va, ulong size)
{
// If size is 0, there's nothing to unmap, just exit early.
if (size == 0)
{
return;
}
UnmapEvent?.Invoke(va, size);
ulong remainingSize = size;
ulong oVa = va;
while (remainingSize != 0)
{
_pageTable.Write((va / PageSize) * PteSize, 0UL);
va += PageSize;
remainingSize -= PageSize;
}
Tracking.Unmap(oVa, size);
}
///
/// Reads data from CPU mapped memory.
///
/// Type of the data being read
/// Virtual address of the data in memory
/// The data
/// Throw for unhandled invalid or unmapped memory accesses
public T Read(ulong va) where T : unmanaged
{
return MemoryMarshal.Cast(GetSpan(va, Unsafe.SizeOf(), true))[0];
}
///
/// Reads data from CPU mapped memory, with read tracking
///
/// Type of the data being read
/// Virtual address of the data in memory
/// The data
public T ReadTracked(ulong va) where T : unmanaged
{
SignalMemoryTracking(va, (ulong)Unsafe.SizeOf(), false);
return MemoryMarshal.Cast(GetSpan(va, Unsafe.SizeOf()))[0];
}
///
/// Reads data from CPU mapped memory.
///
/// Virtual address of the data in memory
/// Span to store the data being read into
/// Throw for unhandled invalid or unmapped memory accesses
public void Read(ulong va, Span data)
{
ReadImpl(va, data);
}
///
/// Writes data to CPU mapped memory.
///
/// Type of the data being written
/// Virtual address to write the data into
/// Data to be written
/// Throw for unhandled invalid or unmapped memory accesses
public void Write(ulong va, T value) where T : unmanaged
{
Write(va, MemoryMarshal.Cast(MemoryMarshal.CreateSpan(ref value, 1)));
}
///
/// Writes data to CPU mapped memory, with write tracking.
///
/// Virtual address to write the data into
/// Data to be written
/// Throw for unhandled invalid or unmapped memory accesses
public void Write(ulong va, ReadOnlySpan data)
{
if (data.Length == 0)
{
return;
}
SignalMemoryTracking(va, (ulong)data.Length, true);
WriteImpl(va, data);
}
///
/// Writes data to CPU mapped memory, without write tracking.
///
/// Virtual address to write the data into
/// Data to be written
public void WriteUntracked(ulong va, ReadOnlySpan data)
{
if (data.Length == 0)
{
return;
}
WriteImpl(va, data);
}
///
/// Writes data to CPU mapped memory.
///
/// Virtual address to write the data into
/// Data to be written
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private void WriteImpl(ulong va, ReadOnlySpan data)
{
try
{
if (IsContiguousAndMapped(va, data.Length))
{
data.CopyTo(_backingMemory.GetSpan(GetPhysicalAddressInternal(va), data.Length));
}
else
{
int offset = 0, size;
if ((va & PageMask) != 0)
{
ulong pa = GetPhysicalAddressInternal(va);
size = Math.Min(data.Length, PageSize - (int)(va & PageMask));
data.Slice(0, size).CopyTo(_backingMemory.GetSpan(pa, size));
offset += size;
}
for (; offset < data.Length; offset += size)
{
ulong pa = GetPhysicalAddressInternal(va + (ulong)offset);
size = Math.Min(data.Length - offset, PageSize);
data.Slice(offset, size).CopyTo(_backingMemory.GetSpan(pa, size));
}
}
}
catch (InvalidMemoryRegionException)
{
if (_invalidAccessHandler == null || !_invalidAccessHandler(va))
{
throw;
}
}
}
///
/// Gets a read-only span of data from CPU mapped memory.
///
///
/// This may perform a allocation if the data is not contiguous in memory.
/// For this reason, the span is read-only, you can't modify the data.
///
/// Virtual address of the data
/// Size of the data
/// True if read tracking is triggered on the span
/// A read-only span of the data
/// Throw for unhandled invalid or unmapped memory accesses
public ReadOnlySpan GetSpan(ulong va, int size, bool tracked = false)
{
if (size == 0)
{
return ReadOnlySpan.Empty;
}
if (tracked)
{
SignalMemoryTracking(va, (ulong)size, false);
}
if (IsContiguousAndMapped(va, size))
{
return _backingMemory.GetSpan(GetPhysicalAddressInternal(va), size);
}
else
{
Span data = new byte[size];
ReadImpl(va, data);
return data;
}
}
///
/// Gets a region of memory that can be written to.
///
///
/// If the requested region is not contiguous in physical memory,
/// this will perform an allocation, and flush the data (writing it
/// back to guest memory) on disposal.
///
/// Virtual address of the data
/// Size of the data
/// A writable region of memory containing the data
/// Throw for unhandled invalid or unmapped memory accesses
public WritableRegion GetWritableRegion(ulong va, int size)
{
if (size == 0)
{
return new WritableRegion(null, va, Memory.Empty);
}
if (IsContiguousAndMapped(va, size))
{
return new WritableRegion(null, va, _backingMemory.GetMemory(GetPhysicalAddressInternal(va), size));
}
else
{
Memory memory = new byte[size];
GetSpan(va, size).CopyTo(memory.Span);
return new WritableRegion(this, va, memory);
}
}
///
/// Gets a reference for the given type at the specified virtual memory address.
///
///
/// The data must be located at a contiguous memory region.
///
/// Type of the data to get the reference
/// Virtual address of the data
/// A reference to the data in memory
/// Throw if the specified memory region is not contiguous in physical memory
public ref T GetRef(ulong va) where T : unmanaged
{
if (!IsContiguous(va, Unsafe.SizeOf()))
{
ThrowMemoryNotContiguous();
}
SignalMemoryTracking(va, (ulong)Unsafe.SizeOf(), true);
return ref _backingMemory.GetRef(GetPhysicalAddressInternal(va));
}
private void ThrowMemoryNotContiguous() => throw new MemoryNotContiguousException();
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private bool IsContiguousAndMapped(ulong va, int size) => IsContiguous(va, size) && IsMapped(va);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private bool IsContiguous(ulong va, int size)
{
if (!ValidateAddress(va))
{
return false;
}
ulong endVa = (va + (ulong)size + PageMask) & ~(ulong)PageMask;
va &= ~(ulong)PageMask;
int pages = (int)((endVa - va) / PageSize);
for (int page = 0; page < pages - 1; page++)
{
if (!ValidateAddress(va + PageSize))
{
return false;
}
if (GetPhysicalAddressInternal(va) + PageSize != GetPhysicalAddressInternal(va + PageSize))
{
return false;
}
va += PageSize;
}
return true;
}
///
/// Gets the physical regions that make up the given virtual address region.
/// If any part of the virtual region is unmapped, null is returned.
///
/// Virtual address of the range
/// Size of the range
/// Array of physical regions
public (ulong address, ulong size)[] GetPhysicalRegions(ulong va, ulong size)
{
if (!ValidateAddress(va))
{
return null;
}
ulong endVa = (va + size + PageMask) & ~(ulong)PageMask;
va &= ~(ulong)PageMask;
int pages = (int)((endVa - va) / PageSize);
List<(ulong, ulong)> regions = new List<(ulong, ulong)>();
ulong regionStart = GetPhysicalAddressInternal(va);
ulong regionSize = PageSize;
for (int page = 0; page < pages - 1; page++)
{
if (!ValidateAddress(va + PageSize))
{
return null;
}
ulong newPa = GetPhysicalAddressInternal(va + PageSize);
if (GetPhysicalAddressInternal(va) + PageSize != newPa)
{
regions.Add((regionStart, regionSize));
regionStart = newPa;
regionSize = 0;
}
va += PageSize;
regionSize += PageSize;
}
regions.Add((regionStart, regionSize));
return regions.ToArray();
}
private void ReadImpl(ulong va, Span data)
{
if (data.Length == 0)
{
return;
}
try
{
int offset = 0, size;
if ((va & PageMask) != 0)
{
ulong pa = GetPhysicalAddressInternal(va);
size = Math.Min(data.Length, PageSize - (int)(va & PageMask));
_backingMemory.GetSpan(pa, size).CopyTo(data.Slice(0, size));
offset += size;
}
for (; offset < data.Length; offset += size)
{
ulong pa = GetPhysicalAddressInternal(va + (ulong)offset);
size = Math.Min(data.Length - offset, PageSize);
_backingMemory.GetSpan(pa, size).CopyTo(data.Slice(offset, size));
}
}
catch (InvalidMemoryRegionException)
{
if (_invalidAccessHandler == null || !_invalidAccessHandler(va))
{
throw;
}
}
}
///
/// Checks if a memory range is mapped.
///
/// Virtual address of the range
/// Size of the range in bytes
/// True if the entire range is mapped, false otherwise
public bool IsRangeMapped(ulong va, ulong size)
{
if (size == 0UL)
{
return true;
}
ulong endVa = (va + size + PageMask) & ~(ulong)PageMask;
va &= ~(ulong)PageMask;
while (va < endVa)
{
if (!IsMapped(va))
{
return false;
}
va += PageSize;
}
return true;
}
///
/// Checks if the page at a given CPU virtual address is mapped.
///
/// Virtual address to check
/// True if the address is mapped, false otherwise
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool IsMapped(ulong va)
{
if (!ValidateAddress(va))
{
return false;
}
return _pageTable.Read((va / PageSize) * PteSize) != 0;
}
private bool ValidateAddress(ulong va)
{
return va < _addressSpaceSize;
}
///
/// Performs address translation of the address inside a CPU mapped memory range.
///
///
/// If the address is invalid or unmapped, -1 will be returned.
///
/// Virtual address to be translated
/// The physical address
public ulong GetPhysicalAddress(ulong va)
{
// We return -1L if the virtual address is invalid or unmapped.
if (!ValidateAddress(va) || !IsMapped(va))
{
return ulong.MaxValue;
}
return GetPhysicalAddressInternal(va);
}
private ulong GetPhysicalAddressInternal(ulong va)
{
return PteToPa(_pageTable.Read((va / PageSize) * PteSize) & ~(0xffffUL << 48)) + (va & PageMask);
}
///
/// Reprotect a region of virtual memory for tracking. Sets software protection bits.
///
/// Virtual address base
/// Size of the region to protect
/// Memory protection to set
public void TrackingReprotect(ulong va, ulong size, MemoryPermission protection)
{
// Protection is inverted on software pages, since the default value is 0.
protection = (~protection) & MemoryPermission.ReadAndWrite;
long tag = (long)protection << 48;
if (tag > 0)
{
tag |= long.MinValue; // If any protection is present, the whole pte is negative.
}
ulong endVa = (va + size + PageMask) & ~(ulong)PageMask;
long invTagMask = ~(0xffffL << 48);
while (va < endVa)
{
ref long pageRef = ref _pageTable.GetRef((va >> PageBits) * PteSize);
long pte;
do
{
pte = Volatile.Read(ref pageRef);
}
while (Interlocked.CompareExchange(ref pageRef, (pte & invTagMask) | tag, pte) != pte);
va += PageSize;
}
}
///
/// Obtains a memory tracking handle for the given virtual region. This should be disposed when finished with.
///
/// CPU virtual address of the region
/// Size of the region
/// The memory tracking handle
public CpuRegionHandle BeginTracking(ulong address, ulong size)
{
return new CpuRegionHandle(Tracking.BeginTracking(address, size));
}
///
/// Obtains a memory tracking handle for the given virtual region, with a specified granularity. This should be disposed when finished with.
///
/// CPU virtual address of the region
/// Size of the region
/// Desired granularity of write tracking
/// The memory tracking handle
public CpuMultiRegionHandle BeginGranularTracking(ulong address, ulong size, ulong granularity)
{
return new CpuMultiRegionHandle(Tracking.BeginGranularTracking(address, size, granularity));
}
///
/// Obtains a smart memory tracking handle for the given virtual region, with a specified granularity. This should be disposed when finished with.
///
/// CPU virtual address of the region
/// Size of the region
/// Desired granularity of write tracking
/// The memory tracking handle
public CpuSmartMultiRegionHandle BeginSmartGranularTracking(ulong address, ulong size, ulong granularity)
{
return new CpuSmartMultiRegionHandle(Tracking.BeginSmartGranularTracking(address, size, granularity));
}
///
/// Alerts the memory tracking that a given region has been read from or written to.
/// This should be called before read/write is performed.
///
/// Virtual address of the region
/// Size of the region
public void SignalMemoryTracking(ulong va, ulong size, bool write)
{
// We emulate guard pages for software memory access. This makes for an easy transition to
// tracking using host guard pages in future, but also supporting platforms where this is not possible.
// Write tag includes read protection, since we don't have any read actions that aren't performed before write too.
long tag = (write ? 3L : 1L) << 48;
ulong endVa = (va + size + PageMask) & ~(ulong)PageMask;
while (va < endVa)
{
ref long pageRef = ref _pageTable.GetRef((va >> PageBits) * PteSize);
long pte;
pte = Volatile.Read(ref pageRef);
if ((pte & tag) != 0)
{
Tracking.VirtualMemoryEvent(va, size, write);
break;
}
va += PageSize;
}
}
private ulong PaToPte(ulong pa)
{
return (ulong)_backingMemory.GetPointer(pa, PageSize).ToInt64();
}
private ulong PteToPa(ulong pte)
{
return (ulong)((long)pte - _backingMemory.Pointer.ToInt64());
}
///
/// Disposes of resources used by the memory manager.
///
public void Dispose() => _pageTable.Dispose();
}
}