using ARMeilleure.Memory;
using Ryujinx.Memory;
using System;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Threading;
namespace Ryujinx.Cpu
{
///
/// Represents a CPU memory manager.
///
public sealed class MemoryManager : IMemoryManager, IDisposable
{
public const int PageBits = 12;
public const int PageSize = 1 << PageBits;
public const int PageMask = PageSize - 1;
private const int PteSize = 8;
private readonly InvalidAccessHandler _invalidAccessHandler;
///
/// Address space width in bits.
///
public int AddressSpaceBits { get; }
private readonly ulong _addressSpaceSize;
private readonly MemoryBlock _backingMemory;
private readonly MemoryBlock _pageTable;
///
/// Page table base pointer.
///
public IntPtr PageTablePointer => _pageTable.Pointer;
///
/// Creates a new instance of the memory manager.
///
/// Physical backing memory where virtual memory will be mapped to
/// Size of the address space
/// Optional function to handle invalid memory accesses
public MemoryManager(MemoryBlock backingMemory, ulong addressSpaceSize, InvalidAccessHandler invalidAccessHandler = null)
{
_invalidAccessHandler = invalidAccessHandler;
ulong asSize = PageSize;
int asBits = PageBits;
while (asSize < addressSpaceSize)
{
asSize <<= 1;
asBits++;
}
AddressSpaceBits = asBits;
_addressSpaceSize = asSize;
_backingMemory = backingMemory;
_pageTable = new MemoryBlock((asSize / PageSize) * PteSize);
}
///
/// Maps a virtual memory range into a physical memory range.
///
///
/// Addresses and size must be page aligned.
///
/// Virtual memory address
/// Physical memory address
/// Size to be mapped
public void Map(ulong va, ulong pa, ulong size)
{
while (size != 0)
{
_pageTable.Write((va / PageSize) * PteSize, PaToPte(pa));
va += PageSize;
pa += PageSize;
size -= PageSize;
}
}
///
/// Unmaps a previously mapped range of virtual memory.
///
/// Virtual address of the range to be unmapped
/// Size of the range to be unmapped
public void Unmap(ulong va, ulong size)
{
while (size != 0)
{
_pageTable.Write((va / PageSize) * PteSize, 0UL);
va += PageSize;
size -= PageSize;
}
}
///
/// Reads data from CPU mapped memory.
///
/// Type of the data being read
/// Virtual address of the data in memory
/// The data
/// Throw for unhandled invalid or unmapped memory accesses
public T Read(ulong va) where T : unmanaged
{
return MemoryMarshal.Cast(GetSpan(va, Unsafe.SizeOf()))[0];
}
///
/// Reads data from CPU mapped memory.
///
/// Virtual address of the data in memory
/// Span to store the data being read into
/// Throw for unhandled invalid or unmapped memory accesses
public void Read(ulong va, Span data)
{
ReadImpl(va, data);
}
///
/// Writes data to CPU mapped memory.
///
/// Type of the data being written
/// Virtual address to write the data into
/// Data to be written
/// Throw for unhandled invalid or unmapped memory accesses
public void Write(ulong va, T value) where T : unmanaged
{
Write(va, MemoryMarshal.Cast(MemoryMarshal.CreateSpan(ref value, 1)));
}
///
/// Writes data to CPU mapped memory.
///
/// Virtual address to write the data into
/// Data to be written
/// Throw for unhandled invalid or unmapped memory accesses
public void Write(ulong va, ReadOnlySpan data)
{
if (data.Length == 0)
{
return;
}
MarkRegionAsModified(va, (ulong)data.Length);
WriteImpl(va, data);
}
///
/// Writes data to CPU mapped memory, without tracking.
///
/// Virtual address to write the data into
/// Data to be written
public void WriteUntracked(ulong va, ReadOnlySpan data)
{
if (data.Length == 0)
{
return;
}
WriteImpl(va, data);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
///
/// Writes data to CPU mapped memory.
///
/// Virtual address to write the data into
/// Data to be written
private void WriteImpl(ulong va, ReadOnlySpan data)
{
try
{
if (IsContiguousAndMapped(va, data.Length))
{
data.CopyTo(_backingMemory.GetSpan(GetPhysicalAddressInternal(va), data.Length));
}
else
{
int offset = 0, size;
if ((va & PageMask) != 0)
{
ulong pa = GetPhysicalAddressInternal(va);
size = Math.Min(data.Length, PageSize - (int)(va & PageMask));
data.Slice(0, size).CopyTo(_backingMemory.GetSpan(pa, size));
offset += size;
}
for (; offset < data.Length; offset += size)
{
ulong pa = GetPhysicalAddressInternal(va + (ulong)offset);
size = Math.Min(data.Length - offset, PageSize);
data.Slice(offset, size).CopyTo(_backingMemory.GetSpan(pa, size));
}
}
}
catch (InvalidMemoryRegionException)
{
if (_invalidAccessHandler == null || !_invalidAccessHandler(va))
{
throw;
}
}
}
///
/// Gets a read-only span of data from CPU mapped memory.
///
///
/// This may perform a allocation if the data is not contiguous in memory.
/// For this reason, the span is read-only, you can't modify the data.
///
/// Virtual address of the data
/// Size of the data
/// A read-only span of the data
/// Throw for unhandled invalid or unmapped memory accesses
public ReadOnlySpan GetSpan(ulong va, int size)
{
if (size == 0)
{
return ReadOnlySpan.Empty;
}
if (IsContiguousAndMapped(va, size))
{
return _backingMemory.GetSpan(GetPhysicalAddressInternal(va), size);
}
else
{
Span data = new byte[size];
ReadImpl(va, data);
return data;
}
}
///
/// Gets a region of memory that can be written to.
///
///
/// If the requested region is not contiguous in physical memory,
/// this will perform an allocation, and flush the data (writing it
/// back to guest memory) on disposal.
///
/// Virtual address of the data
/// Size of the data
/// A writable region of memory containing the data
/// Throw for unhandled invalid or unmapped memory accesses
public WritableRegion GetWritableRegion(ulong va, int size)
{
if (size == 0)
{
return new WritableRegion(null, va, Memory.Empty);
}
if (IsContiguousAndMapped(va, size))
{
return new WritableRegion(null, va, _backingMemory.GetMemory(GetPhysicalAddressInternal(va), size));
}
else
{
Memory memory = new byte[size];
GetSpan(va, size).CopyTo(memory.Span);
return new WritableRegion(this, va, memory);
}
}
///
/// Gets a reference for the given type at the specified virtual memory address.
///
///
/// The data must be located at a contiguous memory region.
///
/// Type of the data to get the reference
/// Virtual address of the data
/// A reference to the data in memory
/// Throw if the specified memory region is not contiguous in physical memory
public ref T GetRef(ulong va) where T : unmanaged
{
if (!IsContiguous(va, Unsafe.SizeOf()))
{
ThrowMemoryNotContiguous();
}
MarkRegionAsModified(va, (ulong)Unsafe.SizeOf());
return ref _backingMemory.GetRef(GetPhysicalAddressInternal(va));
}
private void ThrowMemoryNotContiguous() => throw new MemoryNotContiguousException();
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private bool IsContiguousAndMapped(ulong va, int size) => IsContiguous(va, size) && IsMapped(va);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private bool IsContiguous(ulong va, int size)
{
if (!ValidateAddress(va))
{
return false;
}
ulong endVa = (va + (ulong)size + PageMask) & ~(ulong)PageMask;
va &= ~(ulong)PageMask;
int pages = (int)((endVa - va) / PageSize);
for (int page = 0; page < pages - 1; page++)
{
if (!ValidateAddress(va + PageSize))
{
return false;
}
if (GetPhysicalAddressInternal(va) + PageSize != GetPhysicalAddressInternal(va + PageSize))
{
return false;
}
va += PageSize;
}
return true;
}
private void ReadImpl(ulong va, Span data)
{
if (data.Length == 0)
{
return;
}
try
{
int offset = 0, size;
if ((va & PageMask) != 0)
{
ulong pa = GetPhysicalAddressInternal(va);
size = Math.Min(data.Length, PageSize - (int)(va & PageMask));
_backingMemory.GetSpan(pa, size).CopyTo(data.Slice(0, size));
offset += size;
}
for (; offset < data.Length; offset += size)
{
ulong pa = GetPhysicalAddressInternal(va + (ulong)offset);
size = Math.Min(data.Length - offset, PageSize);
_backingMemory.GetSpan(pa, size).CopyTo(data.Slice(offset, size));
}
}
catch (InvalidMemoryRegionException)
{
if (_invalidAccessHandler == null || !_invalidAccessHandler(va))
{
throw;
}
}
}
///
/// Checks if a specified virtual memory region has been modified by the CPU since the last call.
///
/// Virtual address of the region
/// Size of the region
/// Resource identifier number (maximum is 15)
/// Optional array where the modified ranges should be written
/// The number of modified ranges
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public int QueryModified(ulong va, ulong size, int id, (ulong, ulong)[] modifiedRanges = null)
{
if (!ValidateAddress(va))
{
return 0;
}
ulong maxSize = _addressSpaceSize - va;
if (size > maxSize)
{
size = maxSize;
}
// We need to ensure that the tagged pointer value is negative,
// JIT generated code checks that to take the slow paths and call the MemoryManager Read/Write methods.
long tag = (0x8000L | (1L << id)) << 48;
ulong endVa = (va + size + PageMask) & ~(ulong)PageMask;
va &= ~(ulong)PageMask;
ulong rgStart = va;
ulong rgSize = 0;
int rangeIndex = 0;
for (; va < endVa; va += PageSize)
{
while (true)
{
ref long pte = ref _pageTable.GetRef((va >> PageBits) * PteSize);
long pteValue = pte;
// If the PTE value is 0, that means that the page is unmapped.
// We behave as if the page was not modified, since modifying a page
// that is not even mapped is impossible.
if ((pteValue & tag) == tag || pteValue == 0)
{
if (rgSize != 0)
{
if (modifiedRanges != null && rangeIndex < modifiedRanges.Length)
{
modifiedRanges[rangeIndex] = (rgStart, rgSize);
}
rangeIndex++;
rgSize = 0;
}
break;
}
else
{
if (Interlocked.CompareExchange(ref pte, pteValue | tag, pteValue) == pteValue)
{
if (rgSize == 0)
{
rgStart = va;
}
rgSize += PageSize;
break;
}
}
}
}
if (rgSize != 0)
{
if (modifiedRanges != null && rangeIndex < modifiedRanges.Length)
{
modifiedRanges[rangeIndex] = (rgStart, rgSize);
}
rangeIndex++;
}
return rangeIndex;
}
///
/// Checks if the page at a given CPU virtual address.
///
/// Virtual address to check
/// True if the address is mapped, false otherwise
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool IsMapped(ulong va)
{
if (!ValidateAddress(va))
{
return false;
}
return _pageTable.Read((va / PageSize) * PteSize) != 0;
}
private bool ValidateAddress(ulong va)
{
return va < _addressSpaceSize;
}
///
/// Performs address translation of the address inside a CPU mapped memory range.
///
///
/// If the address is invalid or unmapped, -1 will be returned.
///
/// Virtual address to be translated
/// The physical address
public ulong GetPhysicalAddress(ulong va)
{
// We return -1L if the virtual address is invalid or unmapped.
if (!ValidateAddress(va) || !IsMapped(va))
{
return ulong.MaxValue;
}
return GetPhysicalAddressInternal(va);
}
private ulong GetPhysicalAddressInternal(ulong va)
{
return PteToPa(_pageTable.Read((va / PageSize) * PteSize) & ~(0xffffUL << 48)) + (va & PageMask);
}
///
/// Marks a region of memory as modified by the CPU.
///
/// Virtual address of the region
/// Size of the region
public void MarkRegionAsModified(ulong va, ulong size)
{
ulong endVa = (va + size + PageMask) & ~(ulong)PageMask;
while (va < endVa)
{
ref long pageRef = ref _pageTable.GetRef((va >> PageBits) * PteSize);
long pte;
do
{
pte = Volatile.Read(ref pageRef);
if (pte >= 0)
{
break;
}
}
while (Interlocked.CompareExchange(ref pageRef, pte & ~(0xffffL << 48), pte) != pte);
va += PageSize;
}
}
private ulong PaToPte(ulong pa)
{
return (ulong)_backingMemory.GetPointer(pa, PageSize).ToInt64();
}
private ulong PteToPa(ulong pte)
{
return (ulong)((long)pte - _backingMemory.Pointer.ToInt64());
}
///
/// Disposes of resources used by the memory manager.
///
public void Dispose() => _pageTable.Dispose();
}
}