using System;
namespace Ryujinx.Common.Collections
{
///
/// Tree that provides the ability for O(logN) lookups for keys that exist in the tree, and O(logN) lookups for keys immediately greater than or less than a specified key.
///
/// Derived node type
public class IntrusiveRedBlackTree : IntrusiveRedBlackTreeImpl where T : IntrusiveRedBlackTreeNode, IComparable
{
#region Public Methods
///
/// Adds a new node into the tree.
///
/// Node to be added
/// is null
public void Add(T node)
{
if (node == null)
{
throw new ArgumentNullException(nameof(node));
}
Insert(node);
}
///
/// Removes a node from the tree.
///
/// Note to be removed
/// is null
public void Remove(T node)
{
if (node == null)
{
throw new ArgumentNullException(nameof(node));
}
if (Delete(node) != null)
{
Count--;
}
}
///
/// Retrieve the node that is considered equal to the specified node by the comparator.
///
/// Node to compare with
/// Node that is equal to
/// is null
public T GetNode(T searchNode)
{
if (searchNode == null)
{
throw new ArgumentNullException(nameof(searchNode));
}
T node = Root;
while (node != null)
{
int cmp = searchNode.CompareTo(node);
if (cmp < 0)
{
node = node.Left;
}
else if (cmp > 0)
{
node = node.Right;
}
else
{
return node;
}
}
return null;
}
#endregion
#region Private Methods (BST)
///
/// Inserts a new node into the tree.
///
/// Node to be inserted
private void Insert(T node)
{
T newNode = BSTInsert(node);
RestoreBalanceAfterInsertion(newNode);
}
///
/// Insertion Mechanism for a Binary Search Tree (BST).
///
/// Iterates the tree starting from the root and inserts a new node
/// where all children in the left subtree are less than ,
/// and all children in the right subtree are greater than .
///
/// Node to be inserted
/// The inserted Node
private T BSTInsert(T newNode)
{
T parent = null;
T node = Root;
while (node != null)
{
parent = node;
int cmp = newNode.CompareTo(node);
if (cmp < 0)
{
node = node.Left;
}
else if (cmp > 0)
{
node = node.Right;
}
else
{
return node;
}
}
newNode.Parent = parent;
if (parent == null)
{
Root = newNode;
}
else if (newNode.CompareTo(parent) < 0)
{
parent.Left = newNode;
}
else
{
parent.Right = newNode;
}
Count++;
return newNode;
}
///
/// Removes from the tree, if it exists.
///
/// Node to be removed
/// The deleted Node
private T Delete(T nodeToDelete)
{
if (nodeToDelete == null)
{
return null;
}
T old = nodeToDelete;
T child;
T parent;
bool color;
if (LeftOf(nodeToDelete) == null)
{
child = RightOf(nodeToDelete);
}
else if (RightOf(nodeToDelete) == null)
{
child = LeftOf(nodeToDelete);
}
else
{
T element = Minimum(RightOf(nodeToDelete));
child = RightOf(element);
parent = ParentOf(element);
color = ColorOf(element);
if (child != null)
{
child.Parent = parent;
}
if (parent == null)
{
Root = child;
}
else if (element == LeftOf(parent))
{
parent.Left = child;
}
else
{
parent.Right = child;
}
if (ParentOf(element) == old)
{
parent = element;
}
element.Color = old.Color;
element.Left = old.Left;
element.Right = old.Right;
element.Parent = old.Parent;
if (ParentOf(old) == null)
{
Root = element;
}
else if (old == LeftOf(ParentOf(old)))
{
ParentOf(old).Left = element;
}
else
{
ParentOf(old).Right = element;
}
LeftOf(old).Parent = element;
if (RightOf(old) != null)
{
RightOf(old).Parent = element;
}
if (child != null && color == Black)
{
RestoreBalanceAfterRemoval(child);
}
return old;
}
parent = ParentOf(nodeToDelete);
color = ColorOf(nodeToDelete);
if (child != null)
{
child.Parent = parent;
}
if (parent == null)
{
Root = child;
}
else if (nodeToDelete == LeftOf(parent))
{
parent.Left = child;
}
else
{
parent.Right = child;
}
if (child != null && color == Black)
{
RestoreBalanceAfterRemoval(child);
}
return old;
}
#endregion
}
public static class IntrusiveRedBlackTreeExtensions
{
///
/// Retrieve the node that is considered equal to the key by the comparator.
///
/// Tree to search at
/// Key of the node to be found
/// Node that is equal to
public static N GetNodeByKey(this IntrusiveRedBlackTree tree, K key)
where N : IntrusiveRedBlackTreeNode, IComparable, IComparable
where K : struct
{
N node = tree.RootNode;
while (node != null)
{
int cmp = node.CompareTo(key);
if (cmp < 0)
{
node = node.Right;
}
else if (cmp > 0)
{
node = node.Left;
}
else
{
return node;
}
}
return null;
}
}
}