using System; using System.Collections.Generic; namespace Ryujinx.Memory.WindowsShared { /// /// An Augmented Interval Tree based off of the "TreeDictionary"'s Red-Black Tree. Allows fast overlap checking of ranges. /// /// Key /// Value class IntervalTree where K : IComparable { private const int ArrayGrowthSize = 32; private const bool Black = true; private const bool Red = false; private IntervalTreeNode _root = null; private int _count = 0; public int Count => _count; public IntervalTree() { } #region Public Methods /// /// Gets the values of the interval whose key is . /// /// Key of the node value to get /// Value with the given /// True if the key is on the dictionary, false otherwise public bool TryGet(K key, out V value) { IntervalTreeNode node = GetNode(key); if (node == null) { value = default; return false; } value = node.Value; return true; } /// /// Returns the start addresses of the intervals whose start and end keys overlap the given range. /// /// Start of the range /// End of the range /// Overlaps array to place results in /// Index to start writing results into the array. Defaults to 0 /// Number of intervals found public int Get(K start, K end, ref IntervalTreeNode[] overlaps, int overlapCount = 0) { GetNodes(_root, start, end, ref overlaps, ref overlapCount); return overlapCount; } /// /// Adds a new interval into the tree whose start is , end is and value is . /// /// Start of the range to add /// End of the range to insert /// Value to add /// is null public void Add(K start, K end, V value) { if (value == null) { throw new ArgumentNullException(nameof(value)); } BSTInsert(start, end, value, null, out _); } /// /// Removes a value from the tree, searching for it with . /// /// Key of the node to remove /// Number of deleted values public int Remove(K key) { return Remove(GetNode(key)); } /// /// Removes a value from the tree, searching for it with . /// /// Node to be removed /// Number of deleted values public int Remove(IntervalTreeNode nodeToDelete) { if (nodeToDelete == null) { return 0; } Delete(nodeToDelete); _count--; return 1; } /// /// Adds all the nodes in the dictionary into . /// /// A list of all values sorted by Key Order public List AsList() { List list = new List(); AddToList(_root, list); return list; } #endregion #region Private Methods (BST) /// /// Adds all values that are children of or contained within into , in Key Order. /// /// The node to search for values within /// The list to add values to private void AddToList(IntervalTreeNode node, List list) { if (node == null) { return; } AddToList(node.Left, list); list.Add(node.Value); AddToList(node.Right, list); } /// /// Retrieve the node reference whose key is , or null if no such node exists. /// /// Key of the node to get /// is null /// Node reference in the tree private IntervalTreeNode GetNode(K key) { if (key == null) { throw new ArgumentNullException(nameof(key)); } IntervalTreeNode node = _root; while (node != null) { int cmp = key.CompareTo(node.Start); if (cmp < 0) { node = node.Left; } else if (cmp > 0) { node = node.Right; } else { return node; } } return null; } /// /// Retrieve all nodes that overlap the given start and end keys. /// /// Start of the range /// End of the range /// Overlaps array to place results in /// Overlaps count to update private void GetNodes(IntervalTreeNode node, K start, K end, ref IntervalTreeNode[] overlaps, ref int overlapCount) { if (node == null || start.CompareTo(node.Max) >= 0) { return; } GetNodes(node.Left, start, end, ref overlaps, ref overlapCount); bool endsOnRight = end.CompareTo(node.Start) > 0; if (endsOnRight) { if (start.CompareTo(node.End) < 0) { if (overlaps.Length >= overlapCount) { Array.Resize(ref overlaps, overlapCount + ArrayGrowthSize); } overlaps[overlapCount++] = node; } GetNodes(node.Right, start, end, ref overlaps, ref overlapCount); } } /// /// Propagate an increase in max value starting at the given node, heading up the tree. /// This should only be called if the max increases - not for rebalancing or removals. /// /// The node to start propagating from private void PropagateIncrease(IntervalTreeNode node) { K max = node.Max; IntervalTreeNode ptr = node; while ((ptr = ptr.Parent) != null) { if (max.CompareTo(ptr.Max) > 0) { ptr.Max = max; } else { break; } } } /// /// Propagate recalculating max value starting at the given node, heading up the tree. /// This fully recalculates the max value from all children when there is potential for it to decrease. /// /// The node to start propagating from private void PropagateFull(IntervalTreeNode node) { IntervalTreeNode ptr = node; do { K max = ptr.End; if (ptr.Left != null && ptr.Left.Max.CompareTo(max) > 0) { max = ptr.Left.Max; } if (ptr.Right != null && ptr.Right.Max.CompareTo(max) > 0) { max = ptr.Right.Max; } ptr.Max = max; } while ((ptr = ptr.Parent) != null); } /// /// Insertion Mechanism for the interval tree. Similar to a BST insert, with the start of the range as the key. /// Iterates the tree starting from the root and inserts a new node where all children in the left subtree are less than , and all children in the right subtree are greater than . /// Each node can contain multiple values, and has an end address which is the maximum of all those values. /// Post insertion, the "max" value of the node and all parents are updated. /// /// Start of the range to insert /// End of the range to insert /// Value to insert /// Optional factory used to create a new value if is already on the tree /// Node that was inserted or modified /// True if was not yet on the tree, false otherwise private bool BSTInsert(K start, K end, V value, Func updateFactoryCallback, out IntervalTreeNode outNode) { IntervalTreeNode parent = null; IntervalTreeNode node = _root; while (node != null) { parent = node; int cmp = start.CompareTo(node.Start); if (cmp < 0) { node = node.Left; } else if (cmp > 0) { node = node.Right; } else { outNode = node; if (updateFactoryCallback != null) { // Replace node.Value = updateFactoryCallback(start, node.Value); int endCmp = end.CompareTo(node.End); if (endCmp > 0) { node.End = end; if (end.CompareTo(node.Max) > 0) { node.Max = end; PropagateIncrease(node); RestoreBalanceAfterInsertion(node); } } else if (endCmp < 0) { node.End = end; PropagateFull(node); } } return false; } } IntervalTreeNode newNode = new IntervalTreeNode(start, end, value, parent); if (newNode.Parent == null) { _root = newNode; } else if (start.CompareTo(parent.Start) < 0) { parent.Left = newNode; } else { parent.Right = newNode; } PropagateIncrease(newNode); _count++; RestoreBalanceAfterInsertion(newNode); outNode = newNode; return true; } /// /// Removes the value from the dictionary after searching for it with . /// /// Tree node to be removed private void Delete(IntervalTreeNode nodeToDelete) { IntervalTreeNode replacementNode; if (LeftOf(nodeToDelete) == null || RightOf(nodeToDelete) == null) { replacementNode = nodeToDelete; } else { replacementNode = PredecessorOf(nodeToDelete); } IntervalTreeNode tmp = LeftOf(replacementNode) ?? RightOf(replacementNode); if (tmp != null) { tmp.Parent = ParentOf(replacementNode); } if (ParentOf(replacementNode) == null) { _root = tmp; } else if (replacementNode == LeftOf(ParentOf(replacementNode))) { ParentOf(replacementNode).Left = tmp; } else { ParentOf(replacementNode).Right = tmp; } if (replacementNode != nodeToDelete) { nodeToDelete.Start = replacementNode.Start; nodeToDelete.Value = replacementNode.Value; nodeToDelete.End = replacementNode.End; nodeToDelete.Max = replacementNode.Max; } PropagateFull(replacementNode); if (tmp != null && ColorOf(replacementNode) == Black) { RestoreBalanceAfterRemoval(tmp); } } /// /// Returns the node with the largest key where is considered the root node. /// /// Root Node /// Node with the maximum key in the tree of private static IntervalTreeNode Maximum(IntervalTreeNode node) { IntervalTreeNode tmp = node; while (tmp.Right != null) { tmp = tmp.Right; } return tmp; } /// /// Finds the node whose key is immediately less than . /// /// Node to find the predecessor of /// Predecessor of private static IntervalTreeNode PredecessorOf(IntervalTreeNode node) { if (node.Left != null) { return Maximum(node.Left); } IntervalTreeNode parent = node.Parent; while (parent != null && node == parent.Left) { node = parent; parent = parent.Parent; } return parent; } #endregion #region Private Methods (RBL) private void RestoreBalanceAfterRemoval(IntervalTreeNode balanceNode) { IntervalTreeNode ptr = balanceNode; while (ptr != _root && ColorOf(ptr) == Black) { if (ptr == LeftOf(ParentOf(ptr))) { IntervalTreeNode sibling = RightOf(ParentOf(ptr)); if (ColorOf(sibling) == Red) { SetColor(sibling, Black); SetColor(ParentOf(ptr), Red); RotateLeft(ParentOf(ptr)); sibling = RightOf(ParentOf(ptr)); } if (ColorOf(LeftOf(sibling)) == Black && ColorOf(RightOf(sibling)) == Black) { SetColor(sibling, Red); ptr = ParentOf(ptr); } else { if (ColorOf(RightOf(sibling)) == Black) { SetColor(LeftOf(sibling), Black); SetColor(sibling, Red); RotateRight(sibling); sibling = RightOf(ParentOf(ptr)); } SetColor(sibling, ColorOf(ParentOf(ptr))); SetColor(ParentOf(ptr), Black); SetColor(RightOf(sibling), Black); RotateLeft(ParentOf(ptr)); ptr = _root; } } else { IntervalTreeNode sibling = LeftOf(ParentOf(ptr)); if (ColorOf(sibling) == Red) { SetColor(sibling, Black); SetColor(ParentOf(ptr), Red); RotateRight(ParentOf(ptr)); sibling = LeftOf(ParentOf(ptr)); } if (ColorOf(RightOf(sibling)) == Black && ColorOf(LeftOf(sibling)) == Black) { SetColor(sibling, Red); ptr = ParentOf(ptr); } else { if (ColorOf(LeftOf(sibling)) == Black) { SetColor(RightOf(sibling), Black); SetColor(sibling, Red); RotateLeft(sibling); sibling = LeftOf(ParentOf(ptr)); } SetColor(sibling, ColorOf(ParentOf(ptr))); SetColor(ParentOf(ptr), Black); SetColor(LeftOf(sibling), Black); RotateRight(ParentOf(ptr)); ptr = _root; } } } SetColor(ptr, Black); } private void RestoreBalanceAfterInsertion(IntervalTreeNode balanceNode) { SetColor(balanceNode, Red); while (balanceNode != null && balanceNode != _root && ColorOf(ParentOf(balanceNode)) == Red) { if (ParentOf(balanceNode) == LeftOf(ParentOf(ParentOf(balanceNode)))) { IntervalTreeNode sibling = RightOf(ParentOf(ParentOf(balanceNode))); if (ColorOf(sibling) == Red) { SetColor(ParentOf(balanceNode), Black); SetColor(sibling, Black); SetColor(ParentOf(ParentOf(balanceNode)), Red); balanceNode = ParentOf(ParentOf(balanceNode)); } else { if (balanceNode == RightOf(ParentOf(balanceNode))) { balanceNode = ParentOf(balanceNode); RotateLeft(balanceNode); } SetColor(ParentOf(balanceNode), Black); SetColor(ParentOf(ParentOf(balanceNode)), Red); RotateRight(ParentOf(ParentOf(balanceNode))); } } else { IntervalTreeNode sibling = LeftOf(ParentOf(ParentOf(balanceNode))); if (ColorOf(sibling) == Red) { SetColor(ParentOf(balanceNode), Black); SetColor(sibling, Black); SetColor(ParentOf(ParentOf(balanceNode)), Red); balanceNode = ParentOf(ParentOf(balanceNode)); } else { if (balanceNode == LeftOf(ParentOf(balanceNode))) { balanceNode = ParentOf(balanceNode); RotateRight(balanceNode); } SetColor(ParentOf(balanceNode), Black); SetColor(ParentOf(ParentOf(balanceNode)), Red); RotateLeft(ParentOf(ParentOf(balanceNode))); } } } SetColor(_root, Black); } private void RotateLeft(IntervalTreeNode node) { if (node != null) { IntervalTreeNode right = RightOf(node); node.Right = LeftOf(right); if (node.Right != null) { node.Right.Parent = node; } IntervalTreeNode nodeParent = ParentOf(node); right.Parent = nodeParent; if (nodeParent == null) { _root = right; } else if (node == LeftOf(nodeParent)) { nodeParent.Left = right; } else { nodeParent.Right = right; } right.Left = node; node.Parent = right; PropagateFull(node); } } private void RotateRight(IntervalTreeNode node) { if (node != null) { IntervalTreeNode left = LeftOf(node); node.Left = RightOf(left); if (node.Left != null) { node.Left.Parent = node; } IntervalTreeNode nodeParent = ParentOf(node); left.Parent = nodeParent; if (nodeParent == null) { _root = left; } else if (node == RightOf(nodeParent)) { nodeParent.Right = left; } else { nodeParent.Left = left; } left.Right = node; node.Parent = left; PropagateFull(node); } } #endregion #region Safety-Methods // These methods save memory by allowing us to forego sentinel nil nodes, as well as serve as protection against NullReferenceExceptions. /// /// Returns the color of , or Black if it is null. /// /// Node /// The boolean color of , or black if null private static bool ColorOf(IntervalTreeNode node) { return node == null || node.Color; } /// /// Sets the color of node to . ///

/// This method does nothing if is null. ///
/// Node to set the color of /// Color (Boolean) private static void SetColor(IntervalTreeNode node, bool color) { if (node != null) { node.Color = color; } } /// /// This method returns the left node of , or null if is null. /// /// Node to retrieve the left child from /// Left child of private static IntervalTreeNode LeftOf(IntervalTreeNode node) { return node?.Left; } /// /// This method returns the right node of , or null if is null. /// /// Node to retrieve the right child from /// Right child of private static IntervalTreeNode RightOf(IntervalTreeNode node) { return node?.Right; } /// /// Returns the parent node of , or null if is null. /// /// Node to retrieve the parent from /// Parent of private static IntervalTreeNode ParentOf(IntervalTreeNode node) { return node?.Parent; } #endregion public bool ContainsKey(K key) { return GetNode(key) != null; } public void Clear() { _root = null; _count = 0; } } /// /// Represents a node in the IntervalTree which contains start and end keys of type K, and a value of generic type V. /// /// Key type of the node /// Value type of the node class IntervalTreeNode { public bool Color = true; public IntervalTreeNode Left = null; public IntervalTreeNode Right = null; public IntervalTreeNode Parent = null; /// /// The start of the range. /// public K Start; /// /// The end of the range. /// public K End; /// /// The maximum end value of this node and all its children. /// public K Max; /// /// Value stored on this node. /// public V Value; public IntervalTreeNode(K start, K end, V value, IntervalTreeNode parent) { Start = start; End = end; Max = end; Value = value; Parent = parent; } } }