using System; using System.Collections.Generic; using System.Linq; namespace Ryujinx.Common.Collections { /// /// An Augmented Interval Tree based off of the "TreeDictionary"'s Red-Black Tree. Allows fast overlap checking of ranges. /// /// Key /// Value public class IntervalTree : IntrusiveRedBlackTreeImpl> where K : IComparable { private const int ArrayGrowthSize = 32; #region Public Methods /// /// Gets the values of the interval whose key is . /// /// Key of the node value to get /// Overlaps array to place results in /// Number of values found /// is null public int Get(K key, ref V[] overlaps) { ArgumentNullException.ThrowIfNull(key); IntervalTreeNode node = GetNode(key); if (node == null) { return 0; } if (node.Values.Count > overlaps.Length) { Array.Resize(ref overlaps, node.Values.Count); } int overlapsCount = 0; foreach (RangeNode value in node.Values) { overlaps[overlapsCount++] = value.Value; } return overlapsCount; } /// /// Returns the values of the intervals whose start and end keys overlap the given range. /// /// Start of the range /// End of the range /// Overlaps array to place results in /// Index to start writing results into the array. Defaults to 0 /// Number of values found /// or is null public int Get(K start, K end, ref V[] overlaps, int overlapCount = 0) { ArgumentNullException.ThrowIfNull(start); ArgumentNullException.ThrowIfNull(end); GetValues(Root, start, end, ref overlaps, ref overlapCount); return overlapCount; } /// /// Adds a new interval into the tree whose start is , end is and value is . /// /// Start of the range to add /// End of the range to insert /// Value to add /// , or are null public void Add(K start, K end, V value) { ArgumentNullException.ThrowIfNull(start); ArgumentNullException.ThrowIfNull(end); ArgumentNullException.ThrowIfNull(value); Insert(start, end, value); } /// /// Removes the given from the tree, searching for it with . /// /// Key of the node to remove /// Value to remove /// is null /// Number of deleted values public int Remove(K key, V value) { ArgumentNullException.ThrowIfNull(key); int removed = Delete(key, value); Count -= removed; return removed; } /// /// Adds all the nodes in the dictionary into . /// /// A list of all RangeNodes sorted by Key Order public List> AsList() { List> list = new List>(); AddToList(Root, list); return list; } #endregion #region Private Methods (BST) /// /// Adds all RangeNodes that are children of or contained within into , in Key Order. /// /// The node to search for RangeNodes within /// The list to add RangeNodes to private void AddToList(IntervalTreeNode node, List> list) { if (node == null) { return; } AddToList(node.Left, list); list.AddRange(node.Values); AddToList(node.Right, list); } /// /// Retrieve the node reference whose key is , or null if no such node exists. /// /// Key of the node to get /// Node reference in the tree /// is null private IntervalTreeNode GetNode(K key) { ArgumentNullException.ThrowIfNull(key); IntervalTreeNode node = Root; while (node != null) { int cmp = key.CompareTo(node.Start); if (cmp < 0) { node = node.Left; } else if (cmp > 0) { node = node.Right; } else { return node; } } return null; } /// /// Retrieve all values that overlap the given start and end keys. /// /// Start of the range /// End of the range /// Overlaps array to place results in /// Overlaps count to update private void GetValues(IntervalTreeNode node, K start, K end, ref V[] overlaps, ref int overlapCount) { if (node == null || start.CompareTo(node.Max) >= 0) { return; } GetValues(node.Left, start, end, ref overlaps, ref overlapCount); bool endsOnRight = end.CompareTo(node.Start) > 0; if (endsOnRight) { if (start.CompareTo(node.End) < 0) { // Contains this node. Add overlaps to list. foreach (RangeNode overlap in node.Values) { if (start.CompareTo(overlap.End) < 0) { if (overlaps.Length >= overlapCount) { Array.Resize(ref overlaps, overlapCount + ArrayGrowthSize); } overlaps[overlapCount++] = overlap.Value; } } } GetValues(node.Right, start, end, ref overlaps, ref overlapCount); } } /// /// Inserts a new node into the tree with a given , and . /// /// Start of the range to insert /// End of the range to insert /// Value to insert private void Insert(K start, K end, V value) { IntervalTreeNode newNode = BSTInsert(start, end, value); RestoreBalanceAfterInsertion(newNode); } /// /// Propagate an increase in max value starting at the given node, heading up the tree. /// This should only be called if the max increases - not for rebalancing or removals. /// /// The node to start propagating from private void PropagateIncrease(IntervalTreeNode node) { K max = node.Max; IntervalTreeNode ptr = node; while ((ptr = ptr.Parent) != null) { if (max.CompareTo(ptr.Max) > 0) { ptr.Max = max; } else { break; } } } /// /// Propagate recalculating max value starting at the given node, heading up the tree. /// This fully recalculates the max value from all children when there is potential for it to decrease. /// /// The node to start propagating from private void PropagateFull(IntervalTreeNode node) { IntervalTreeNode ptr = node; do { K max = ptr.End; if (ptr.Left != null && ptr.Left.Max.CompareTo(max) > 0) { max = ptr.Left.Max; } if (ptr.Right != null && ptr.Right.Max.CompareTo(max) > 0) { max = ptr.Right.Max; } ptr.Max = max; } while ((ptr = ptr.Parent) != null); } /// /// Insertion Mechanism for the interval tree. Similar to a BST insert, with the start of the range as the key. /// Iterates the tree starting from the root and inserts a new node where all children in the left subtree are less than , and all children in the right subtree are greater than . /// Each node can contain multiple values, and has an end address which is the maximum of all those values. /// Post insertion, the "max" value of the node and all parents are updated. /// /// Start of the range to insert /// End of the range to insert /// Value to insert /// The inserted Node private IntervalTreeNode BSTInsert(K start, K end, V value) { IntervalTreeNode parent = null; IntervalTreeNode node = Root; while (node != null) { parent = node; int cmp = start.CompareTo(node.Start); if (cmp < 0) { node = node.Left; } else if (cmp > 0) { node = node.Right; } else { node.Values.Add(new RangeNode(start, end, value)); if (end.CompareTo(node.End) > 0) { node.End = end; if (end.CompareTo(node.Max) > 0) { node.Max = end; PropagateIncrease(node); } } Count++; return node; } } IntervalTreeNode newNode = new IntervalTreeNode(start, end, value, parent); if (newNode.Parent == null) { Root = newNode; } else if (start.CompareTo(parent.Start) < 0) { parent.Left = newNode; } else { parent.Right = newNode; } PropagateIncrease(newNode); Count++; return newNode; } /// /// Removes instances of from the dictionary after searching for it with . /// /// Key to search for /// Value to delete /// Number of deleted values private int Delete(K key, V value) { IntervalTreeNode nodeToDelete = GetNode(key); if (nodeToDelete == null) { return 0; } int removed = nodeToDelete.Values.RemoveAll(node => node.Value.Equals(value)); if (nodeToDelete.Values.Count > 0) { if (removed > 0) { nodeToDelete.End = nodeToDelete.Values.Max(node => node.End); // Recalculate max from children and new end. PropagateFull(nodeToDelete); } return removed; } IntervalTreeNode replacementNode; if (LeftOf(nodeToDelete) == null || RightOf(nodeToDelete) == null) { replacementNode = nodeToDelete; } else { replacementNode = PredecessorOf(nodeToDelete); } IntervalTreeNode tmp = LeftOf(replacementNode) ?? RightOf(replacementNode); if (tmp != null) { tmp.Parent = ParentOf(replacementNode); } if (ParentOf(replacementNode) == null) { Root = tmp; } else if (replacementNode == LeftOf(ParentOf(replacementNode))) { ParentOf(replacementNode).Left = tmp; } else { ParentOf(replacementNode).Right = tmp; } if (replacementNode != nodeToDelete) { nodeToDelete.Start = replacementNode.Start; nodeToDelete.Values = replacementNode.Values; nodeToDelete.End = replacementNode.End; nodeToDelete.Max = replacementNode.Max; } PropagateFull(replacementNode); if (tmp != null && ColorOf(replacementNode) == Black) { RestoreBalanceAfterRemoval(tmp); } return removed; } #endregion protected override void RotateLeft(IntervalTreeNode node) { if (node != null) { base.RotateLeft(node); PropagateFull(node); } } protected override void RotateRight(IntervalTreeNode node) { if (node != null) { base.RotateRight(node); PropagateFull(node); } } public bool ContainsKey(K key) { ArgumentNullException.ThrowIfNull(key); return GetNode(key) != null; } } /// /// Represents a value and its start and end keys. /// /// /// public readonly struct RangeNode { public readonly K Start; public readonly K End; public readonly V Value; public RangeNode(K start, K end, V value) { Start = start; End = end; Value = value; } } /// /// Represents a node in the IntervalTree which contains start and end keys of type K, and a value of generic type V. /// /// Key type of the node /// Value type of the node public class IntervalTreeNode : IntrusiveRedBlackTreeNode> { /// /// The start of the range. /// internal K Start; /// /// The end of the range - maximum of all in the Values list. /// internal K End; /// /// The maximum end value of this node and all its children. /// internal K Max; /// /// Values contained on the node that shares a common Start value. /// internal List> Values; internal IntervalTreeNode(K start, K end, V value, IntervalTreeNode parent) { Start = start; End = end; Max = end; Values = new List> { new RangeNode(start, end, value) }; Parent = parent; } } }