using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Gpu.Engine.GPFifo;
using Ryujinx.Graphics.Gpu.Image;
using Ryujinx.Graphics.Gpu.Memory;
using System;
using System.Threading;
namespace Ryujinx.Graphics.Gpu
{
///
/// Represents a GPU channel.
///
public class GpuChannel : IDisposable
{
private readonly GpuContext _context;
private readonly GPFifoDevice _device;
private readonly GPFifoProcessor _processor;
private MemoryManager _memoryManager;
///
/// Channel buffer bindings manager.
///
internal BufferManager BufferManager { get; }
///
/// Channel texture bindings manager.
///
internal TextureManager TextureManager { get; }
///
/// Current channel memory manager.
///
internal MemoryManager MemoryManager => _memoryManager;
///
/// Host hardware capabilities from the GPU context.
///
internal ref Capabilities Capabilities => ref _context.Capabilities;
///
/// Creates a new instance of a GPU channel.
///
/// GPU context that the channel belongs to
internal GpuChannel(GpuContext context)
{
_context = context;
_device = context.GPFifo;
_processor = new GPFifoProcessor(context, this);
BufferManager = new BufferManager(context, this);
TextureManager = new TextureManager(context, this);
}
///
/// Binds a memory manager to the channel.
/// All submitted and in-flight commands will use the specified memory manager for any memory operations.
///
/// The new memory manager to be bound
public void BindMemory(MemoryManager memoryManager)
{
var oldMemoryManager = Interlocked.Exchange(ref _memoryManager, memoryManager ?? throw new ArgumentNullException(nameof(memoryManager)));
memoryManager.Physical.IncrementReferenceCount();
if (oldMemoryManager != null)
{
oldMemoryManager.Physical.BufferCache.NotifyBuffersModified -= BufferManager.Rebind;
oldMemoryManager.Physical.DecrementReferenceCount();
oldMemoryManager.MemoryUnmapped -= MemoryUnmappedHandler;
}
memoryManager.Physical.BufferCache.NotifyBuffersModified += BufferManager.Rebind;
memoryManager.MemoryUnmapped += MemoryUnmappedHandler;
// Since the memory manager changed, make sure we will get pools from addresses of the new memory manager.
TextureManager.ReloadPools();
memoryManager.Physical.BufferCache.QueuePrune();
}
///
/// Memory mappings change event handler.
///
/// Memory manager where the mappings changed
/// Information about the region that is being changed
private void MemoryUnmappedHandler(object sender, UnmapEventArgs e)
{
TextureManager.ReloadPools();
var memoryManager = Volatile.Read(ref _memoryManager);
memoryManager?.Physical.BufferCache.QueuePrune();
}
///
/// Writes data directly to the state of the specified class.
///
/// ID of the class to write the data into
/// State offset in bytes
/// Value to be written
public void Write(ClassId classId, int offset, uint value)
{
_processor.Write(classId, offset, (int)value);
}
///
/// Push a GPFIFO entry in the form of a prefetched command buffer.
/// It is intended to be used by nvservices to handle special cases.
///
/// The command buffer containing the prefetched commands
public void PushHostCommandBuffer(int[] commandBuffer)
{
_device.PushHostCommandBuffer(_processor, commandBuffer);
}
///
/// Pushes GPFIFO entries.
///
/// GPFIFO entries
public void PushEntries(ReadOnlySpan entries)
{
_device.PushEntries(_processor, entries);
}
///
/// Disposes the GPU channel.
/// It's an error to use the GPU channel after disposal.
///
public void Dispose()
{
GC.SuppressFinalize(this);
_context.DeferredActions.Enqueue(Destroy);
}
///
/// Performs disposal of the host GPU resources used by this channel, that are not shared.
/// This must only be called from the render thread.
///
private void Destroy()
{
_processor.Dispose();
TextureManager.Dispose();
var oldMemoryManager = Interlocked.Exchange(ref _memoryManager, null);
if (oldMemoryManager != null)
{
oldMemoryManager.Physical.BufferCache.NotifyBuffersModified -= BufferManager.Rebind;
oldMemoryManager.Physical.DecrementReferenceCount();
oldMemoryManager.MemoryUnmapped -= MemoryUnmappedHandler;
}
}
}
}