Ryujinx/Ryujinx.Graphics.Shader/Instructions/InstEmitConversion.cs
gdkchan dc97457bf0
Initial support for double precision shader instructions. (#963)
* Implement DADD, DFMA and DMUL shader instructions

* Rename FP to FP32

* Correct double immediate

* Classic mistake
2020-03-03 15:02:08 +01:00

253 lines
No EOL
8.2 KiB
C#

using Ryujinx.Graphics.Shader.Decoders;
using Ryujinx.Graphics.Shader.IntermediateRepresentation;
using Ryujinx.Graphics.Shader.Translation;
using static Ryujinx.Graphics.Shader.Instructions.InstEmitHelper;
using static Ryujinx.Graphics.Shader.Instructions.InstEmitAluHelper;
using static Ryujinx.Graphics.Shader.IntermediateRepresentation.OperandHelper;
namespace Ryujinx.Graphics.Shader.Instructions
{
static partial class InstEmit
{
public static void F2F(EmitterContext context)
{
OpCodeFArith op = (OpCodeFArith)context.CurrOp;
FPType dstType = (FPType)op.RawOpCode.Extract(8, 2);
FPType srcType = (FPType)op.RawOpCode.Extract(10, 2);
bool round = op.RawOpCode.Extract(42);
bool negateB = op.RawOpCode.Extract(45);
bool absoluteB = op.RawOpCode.Extract(49);
Operand srcB = context.FPAbsNeg(GetSrcB(context, srcType), absoluteB, negateB, srcType.ToInstFPType());
if (round && srcType == dstType)
{
switch (op.RoundingMode)
{
case RoundingMode.ToNearest:
srcB = context.FPRound(srcB, srcType.ToInstFPType());
break;
case RoundingMode.TowardsNegativeInfinity:
srcB = context.FPFloor(srcB, srcType.ToInstFPType());
break;
case RoundingMode.TowardsPositiveInfinity:
srcB = context.FPCeiling(srcB, srcType.ToInstFPType());
break;
case RoundingMode.TowardsZero:
srcB = context.FPTruncate(srcB, srcType.ToInstFPType());
break;
}
}
// We don't need to handle conversions between FP16 <-> FP32
// since we do FP16 operations as FP32 directly.
// FP16 <-> FP64 conversions are invalid.
if (srcType == FPType.FP32 && dstType == FPType.FP64)
{
srcB = context.FP32ConvertToFP64(srcB);
}
else if (srcType == FPType.FP64 && dstType == FPType.FP32)
{
srcB = context.FP64ConvertToFP32(srcB);
}
srcB = context.FPSaturate(srcB, op.Saturate, dstType.ToInstFPType());
WriteFP(context, dstType, srcB);
// TODO: CC.
}
public static void F2I(EmitterContext context)
{
OpCodeFArith op = (OpCodeFArith)context.CurrOp;
IntegerType intType = (IntegerType)op.RawOpCode.Extract(8, 2);
if (intType == IntegerType.U64)
{
context.Config.PrintLog("Unimplemented 64-bits F2I.");
return;
}
bool isSmallInt = intType <= IntegerType.U16;
FPType floatType = (FPType)op.RawOpCode.Extract(10, 2);
bool isSignedInt = op.RawOpCode.Extract(12);
bool negateB = op.RawOpCode.Extract(45);
bool absoluteB = op.RawOpCode.Extract(49);
if (isSignedInt)
{
intType |= IntegerType.S8;
}
Operand srcB = context.FPAbsNeg(GetSrcB(context, floatType), absoluteB, negateB);
switch (op.RoundingMode)
{
case RoundingMode.ToNearest:
srcB = context.FPRound(srcB);
break;
case RoundingMode.TowardsNegativeInfinity:
srcB = context.FPFloor(srcB);
break;
case RoundingMode.TowardsPositiveInfinity:
srcB = context.FPCeiling(srcB);
break;
case RoundingMode.TowardsZero:
srcB = context.FPTruncate(srcB);
break;
}
if (!isSignedInt)
{
// Negative float to uint cast is undefined, so we clamp
// the value before conversion.
srcB = context.FPMaximum(srcB, ConstF(0));
}
srcB = isSignedInt
? context.FPConvertToS32(srcB)
: context.FPConvertToU32(srcB);
if (isSmallInt)
{
int min = (int)GetIntMin(intType);
int max = (int)GetIntMax(intType);
srcB = isSignedInt
? context.IClampS32(srcB, Const(min), Const(max))
: context.IClampU32(srcB, Const(min), Const(max));
}
Operand dest = GetDest(context);
context.Copy(dest, srcB);
// TODO: CC.
}
public static void I2F(EmitterContext context)
{
OpCodeAlu op = (OpCodeAlu)context.CurrOp;
FPType dstType = (FPType)op.RawOpCode.Extract(8, 2);
IntegerType srcType = (IntegerType)op.RawOpCode.Extract(10, 2);
// TODO: Handle S/U64.
bool isSmallInt = srcType <= IntegerType.U16;
bool isSignedInt = op.RawOpCode.Extract(13);
bool negateB = op.RawOpCode.Extract(45);
bool absoluteB = op.RawOpCode.Extract(49);
Operand srcB = context.IAbsNeg(GetSrcB(context), absoluteB, negateB);
if (isSmallInt)
{
int size = srcType == IntegerType.U16 ? 16 : 8;
srcB = isSignedInt
? context.BitfieldExtractS32(srcB, Const(op.ByteSelection * 8), Const(size))
: context.BitfieldExtractU32(srcB, Const(op.ByteSelection * 8), Const(size));
}
srcB = isSignedInt
? context.IConvertS32ToFP(srcB)
: context.IConvertU32ToFP(srcB);
WriteFP(context, dstType, srcB);
// TODO: CC.
}
public static void I2I(EmitterContext context)
{
OpCodeAlu op = (OpCodeAlu)context.CurrOp;
IntegerType dstType = (IntegerType)op.RawOpCode.Extract(8, 2);
IntegerType srcType = (IntegerType)op.RawOpCode.Extract(10, 2);
if (srcType == IntegerType.U64 || dstType == IntegerType.U64)
{
context.Config.PrintLog("Invalid I2I encoding.");
return;
}
bool srcIsSmallInt = srcType <= IntegerType.U16;
bool dstIsSignedInt = op.RawOpCode.Extract(12);
bool srcIsSignedInt = op.RawOpCode.Extract(13);
bool negateB = op.RawOpCode.Extract(45);
bool absoluteB = op.RawOpCode.Extract(49);
Operand srcB = GetSrcB(context);
if (srcIsSmallInt)
{
int size = srcType == IntegerType.U16 ? 16 : 8;
srcB = srcIsSignedInt
? context.BitfieldExtractS32(srcB, Const(op.ByteSelection * 8), Const(size))
: context.BitfieldExtractU32(srcB, Const(op.ByteSelection * 8), Const(size));
}
srcB = context.IAbsNeg(srcB, absoluteB, negateB);
if (op.Saturate)
{
if (dstIsSignedInt)
{
dstType |= IntegerType.S8;
}
int min = (int)GetIntMin(dstType);
int max = (int)GetIntMax(dstType);
srcB = dstIsSignedInt
? context.IClampS32(srcB, Const(min), Const(max))
: context.IClampU32(srcB, Const(min), Const(max));
}
context.Copy(GetDest(context), srcB);
// TODO: CC.
}
private static void WriteFP(EmitterContext context, FPType type, Operand srcB)
{
Operand dest = GetDest(context);
if (type == FPType.FP32)
{
context.Copy(dest, srcB);
}
else if (type == FPType.FP16)
{
context.Copy(dest, context.PackHalf2x16(srcB, ConstF(0)));
}
else /* if (type == FPType.FP64) */
{
Operand dest2 = GetDest2(context);
context.Copy(dest, context.UnpackDouble2x32Low(srcB));
context.Copy(dest2, context.UnpackDouble2x32High(srcB));
}
}
}
}