Ryujinx/Ryujinx.HLE/HOS/Kernel/Process/KProcess.cs
mageven 189c0c9c72
Implement modding support (#1249)
* Implement Modding Support

* Executables: Rewrite to use contiguous mem and Spans

* Reorder ExeFs, Npdm, ControlData and SaveData calls

After discussion with gdkchan, it was decided it's best to call
LoadExeFs after all other loads are done as it starts the guest process.

* Build RomFs manually instead of Layering FS

Layered FS approach has considerable latency when building the final
romfs. So, we manually replace files in a single romfs instance.

* Add RomFs modding via storage file

* Fix and cleanup MemPatch

* Add dynamically loaded NRO patching

* Support exefs file replacement

* Rewrite ModLoader to use mods-search architecture

* Disable PPTC when exefs patches are detected

Disable PPTC on exefs replacements too

* Rewrite ModLoader, again

* Increased maintainability and matches Atmosphere closely
* Creates base mods structure if it doesn't exist
* Add Exefs partition replacement
* IPSwitch: Fix nsobid parsing

* Move mod logs to new LogClass

* Allow custom suffixes to title dirs again

* Address nits

* Add a per-App "Open Mods Directory" context menu item

Creates the path if not present.

* Normalize tooltips verbiage

* Use LocalStorage and remove unused namespaces
2020-07-09 14:31:15 +10:00

1122 lines
No EOL
34 KiB
C#

using ARMeilleure.State;
using Ryujinx.Common;
using Ryujinx.Cpu;
using Ryujinx.HLE.Exceptions;
using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.HLE.HOS.Kernel.Memory;
using Ryujinx.HLE.HOS.Kernel.Threading;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
namespace Ryujinx.HLE.HOS.Kernel.Process
{
class KProcess : KSynchronizationObject
{
public const int KernelVersionMajor = 10;
public const int KernelVersionMinor = 4;
public const int KernelVersionRevision = 0;
public const int KernelVersionPacked =
(KernelVersionMajor << 19) |
(KernelVersionMinor << 15) |
(KernelVersionRevision << 0);
public KMemoryManager MemoryManager { get; private set; }
private SortedDictionary<ulong, KTlsPageInfo> _fullTlsPages;
private SortedDictionary<ulong, KTlsPageInfo> _freeTlsPages;
public int DefaultCpuCore { get; set; }
public bool Debug { get; private set; }
public KResourceLimit ResourceLimit { get; private set; }
public ulong PersonalMmHeapPagesCount { get; private set; }
public ProcessState State { get; private set; }
private object _processLock;
private object _threadingLock;
public KAddressArbiter AddressArbiter { get; private set; }
public long[] RandomEntropy { get; private set; }
private bool _signaled;
private bool _useSystemMemBlocks;
public string Name { get; private set; }
private int _threadCount;
public int MmuFlags { get; private set; }
private MemoryRegion _memRegion;
public KProcessCapabilities Capabilities { get; private set; }
public ulong TitleId { get; private set; }
public long Pid { get; private set; }
private long _creationTimestamp;
private ulong _entrypoint;
private ulong _imageSize;
private ulong _mainThreadStackSize;
private ulong _memoryUsageCapacity;
private int _version;
public KHandleTable HandleTable { get; private set; }
public ulong UserExceptionContextAddress { get; private set; }
private LinkedList<KThread> _threads;
public bool IsPaused { get; private set; }
public MemoryManager CpuMemory { get; private set; }
public CpuContext CpuContext { get; private set; }
public HleProcessDebugger Debugger { get; private set; }
public KProcess(KernelContext context) : base(context)
{
_processLock = new object();
_threadingLock = new object();
AddressArbiter = new KAddressArbiter(context);
_fullTlsPages = new SortedDictionary<ulong, KTlsPageInfo>();
_freeTlsPages = new SortedDictionary<ulong, KTlsPageInfo>();
Capabilities = new KProcessCapabilities();
RandomEntropy = new long[KScheduler.CpuCoresCount];
_threads = new LinkedList<KThread>();
Debugger = new HleProcessDebugger(this);
}
public KernelResult InitializeKip(
ProcessCreationInfo creationInfo,
int[] caps,
KPageList pageList,
KResourceLimit resourceLimit,
MemoryRegion memRegion)
{
ResourceLimit = resourceLimit;
_memRegion = memRegion;
AddressSpaceType addrSpaceType = (AddressSpaceType)((creationInfo.MmuFlags >> 1) & 7);
InitializeMemoryManager(addrSpaceType, memRegion);
bool aslrEnabled = ((creationInfo.MmuFlags >> 5) & 1) != 0;
ulong codeAddress = creationInfo.CodeAddress;
ulong codeSize = (ulong)creationInfo.CodePagesCount * KMemoryManager.PageSize;
KMemoryBlockAllocator memoryBlockAllocator = (MmuFlags & 0x40) != 0
? KernelContext.LargeMemoryBlockAllocator
: KernelContext.SmallMemoryBlockAllocator;
KernelResult result = MemoryManager.InitializeForProcess(
addrSpaceType,
aslrEnabled,
!aslrEnabled,
memRegion,
codeAddress,
codeSize,
memoryBlockAllocator);
if (result != KernelResult.Success)
{
return result;
}
if (!ValidateCodeAddressAndSize(codeAddress, codeSize))
{
return KernelResult.InvalidMemRange;
}
result = MemoryManager.MapPages(
codeAddress,
pageList,
MemoryState.CodeStatic,
MemoryPermission.None);
if (result != KernelResult.Success)
{
return result;
}
result = Capabilities.InitializeForKernel(caps, MemoryManager);
if (result != KernelResult.Success)
{
return result;
}
Pid = KernelContext.NewKipId();
if (Pid == 0 || (ulong)Pid >= KernelConstants.InitialProcessId)
{
throw new InvalidOperationException($"Invalid KIP Id {Pid}.");
}
result = ParseProcessInfo(creationInfo);
return result;
}
public KernelResult Initialize(
ProcessCreationInfo creationInfo,
int[] caps,
KResourceLimit resourceLimit,
MemoryRegion memRegion)
{
ResourceLimit = resourceLimit;
_memRegion = memRegion;
ulong personalMmHeapSize = GetPersonalMmHeapSize((ulong)creationInfo.PersonalMmHeapPagesCount, memRegion);
ulong codePagesCount = (ulong)creationInfo.CodePagesCount;
ulong neededSizeForProcess = personalMmHeapSize + codePagesCount * KMemoryManager.PageSize;
if (neededSizeForProcess != 0 && resourceLimit != null)
{
if (!resourceLimit.Reserve(LimitableResource.Memory, neededSizeForProcess))
{
return KernelResult.ResLimitExceeded;
}
}
void CleanUpForError()
{
if (neededSizeForProcess != 0 && resourceLimit != null)
{
resourceLimit.Release(LimitableResource.Memory, neededSizeForProcess);
}
}
PersonalMmHeapPagesCount = (ulong)creationInfo.PersonalMmHeapPagesCount;
KMemoryBlockAllocator memoryBlockAllocator;
if (PersonalMmHeapPagesCount != 0)
{
memoryBlockAllocator = new KMemoryBlockAllocator(PersonalMmHeapPagesCount * KMemoryManager.PageSize);
}
else
{
memoryBlockAllocator = (MmuFlags & 0x40) != 0
? KernelContext.LargeMemoryBlockAllocator
: KernelContext.SmallMemoryBlockAllocator;
}
AddressSpaceType addrSpaceType = (AddressSpaceType)((creationInfo.MmuFlags >> 1) & 7);
InitializeMemoryManager(addrSpaceType, memRegion);
bool aslrEnabled = ((creationInfo.MmuFlags >> 5) & 1) != 0;
ulong codeAddress = creationInfo.CodeAddress;
ulong codeSize = codePagesCount * KMemoryManager.PageSize;
KernelResult result = MemoryManager.InitializeForProcess(
addrSpaceType,
aslrEnabled,
!aslrEnabled,
memRegion,
codeAddress,
codeSize,
memoryBlockAllocator);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
if (!ValidateCodeAddressAndSize(codeAddress, codeSize))
{
CleanUpForError();
return KernelResult.InvalidMemRange;
}
result = MemoryManager.MapNewProcessCode(
codeAddress,
codePagesCount,
MemoryState.CodeStatic,
MemoryPermission.None);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
result = Capabilities.InitializeForUser(caps, MemoryManager);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
Pid = KernelContext.NewProcessId();
if (Pid == -1 || (ulong)Pid < KernelConstants.InitialProcessId)
{
throw new InvalidOperationException($"Invalid Process Id {Pid}.");
}
result = ParseProcessInfo(creationInfo);
if (result != KernelResult.Success)
{
CleanUpForError();
}
return result;
}
private bool ValidateCodeAddressAndSize(ulong address, ulong size)
{
ulong codeRegionStart;
ulong codeRegionSize;
switch (MemoryManager.AddrSpaceWidth)
{
case 32:
codeRegionStart = 0x200000;
codeRegionSize = 0x3fe00000;
break;
case 36:
codeRegionStart = 0x8000000;
codeRegionSize = 0x78000000;
break;
case 39:
codeRegionStart = 0x8000000;
codeRegionSize = 0x7ff8000000;
break;
default: throw new InvalidOperationException("Invalid address space width on memory manager.");
}
ulong endAddr = address + size;
ulong codeRegionEnd = codeRegionStart + codeRegionSize;
if (endAddr <= address ||
endAddr - 1 > codeRegionEnd - 1)
{
return false;
}
if (MemoryManager.InsideHeapRegion (address, size) ||
MemoryManager.InsideAliasRegion(address, size))
{
return false;
}
return true;
}
private KernelResult ParseProcessInfo(ProcessCreationInfo creationInfo)
{
// Ensure that the current kernel version is equal or above to the minimum required.
uint requiredKernelVersionMajor = (uint)Capabilities.KernelReleaseVersion >> 19;
uint requiredKernelVersionMinor = ((uint)Capabilities.KernelReleaseVersion >> 15) & 0xf;
if (KernelContext.EnableVersionChecks)
{
if (requiredKernelVersionMajor > KernelVersionMajor)
{
return KernelResult.InvalidCombination;
}
if (requiredKernelVersionMajor != KernelVersionMajor && requiredKernelVersionMajor < 3)
{
return KernelResult.InvalidCombination;
}
if (requiredKernelVersionMinor > KernelVersionMinor)
{
return KernelResult.InvalidCombination;
}
}
KernelResult result = AllocateThreadLocalStorage(out ulong userExceptionContextAddress);
if (result != KernelResult.Success)
{
return result;
}
UserExceptionContextAddress = userExceptionContextAddress;
MemoryHelper.FillWithZeros(CpuMemory, (long)userExceptionContextAddress, KTlsPageInfo.TlsEntrySize);
Name = creationInfo.Name;
State = ProcessState.Created;
_creationTimestamp = PerformanceCounter.ElapsedMilliseconds;
MmuFlags = creationInfo.MmuFlags;
_version = creationInfo.Version;
TitleId = creationInfo.TitleId;
_entrypoint = creationInfo.CodeAddress;
_imageSize = (ulong)creationInfo.CodePagesCount * KMemoryManager.PageSize;
_useSystemMemBlocks = ((MmuFlags >> 6) & 1) != 0;
switch ((AddressSpaceType)((MmuFlags >> 1) & 7))
{
case AddressSpaceType.Addr32Bits:
case AddressSpaceType.Addr36Bits:
case AddressSpaceType.Addr39Bits:
_memoryUsageCapacity = MemoryManager.HeapRegionEnd -
MemoryManager.HeapRegionStart;
break;
case AddressSpaceType.Addr32BitsNoMap:
_memoryUsageCapacity = MemoryManager.HeapRegionEnd -
MemoryManager.HeapRegionStart +
MemoryManager.AliasRegionEnd -
MemoryManager.AliasRegionStart;
break;
default: throw new InvalidOperationException($"Invalid MMU flags value 0x{MmuFlags:x2}.");
}
GenerateRandomEntropy();
return KernelResult.Success;
}
public KernelResult AllocateThreadLocalStorage(out ulong address)
{
KernelContext.CriticalSection.Enter();
KernelResult result;
if (_freeTlsPages.Count > 0)
{
// If we have free TLS pages available, just use the first one.
KTlsPageInfo pageInfo = _freeTlsPages.Values.First();
if (!pageInfo.TryGetFreePage(out address))
{
throw new InvalidOperationException("Unexpected failure getting free TLS page!");
}
if (pageInfo.IsFull())
{
_freeTlsPages.Remove(pageInfo.PageAddr);
_fullTlsPages.Add(pageInfo.PageAddr, pageInfo);
}
result = KernelResult.Success;
}
else
{
// Otherwise, we need to create a new one.
result = AllocateTlsPage(out KTlsPageInfo pageInfo);
if (result == KernelResult.Success)
{
if (!pageInfo.TryGetFreePage(out address))
{
throw new InvalidOperationException("Unexpected failure getting free TLS page!");
}
_freeTlsPages.Add(pageInfo.PageAddr, pageInfo);
}
else
{
address = 0;
}
}
KernelContext.CriticalSection.Leave();
return result;
}
private KernelResult AllocateTlsPage(out KTlsPageInfo pageInfo)
{
pageInfo = default;
if (!KernelContext.UserSlabHeapPages.TryGetItem(out ulong tlsPagePa))
{
return KernelResult.OutOfMemory;
}
ulong regionStart = MemoryManager.TlsIoRegionStart;
ulong regionSize = MemoryManager.TlsIoRegionEnd - regionStart;
ulong regionPagesCount = regionSize / KMemoryManager.PageSize;
KernelResult result = MemoryManager.AllocateOrMapPa(
1,
KMemoryManager.PageSize,
tlsPagePa,
true,
regionStart,
regionPagesCount,
MemoryState.ThreadLocal,
MemoryPermission.ReadAndWrite,
out ulong tlsPageVa);
if (result != KernelResult.Success)
{
KernelContext.UserSlabHeapPages.Free(tlsPagePa);
}
else
{
pageInfo = new KTlsPageInfo(tlsPageVa);
MemoryHelper.FillWithZeros(CpuMemory, (long)tlsPageVa, KMemoryManager.PageSize);
}
return result;
}
public KernelResult FreeThreadLocalStorage(ulong tlsSlotAddr)
{
ulong tlsPageAddr = BitUtils.AlignDown(tlsSlotAddr, KMemoryManager.PageSize);
KernelContext.CriticalSection.Enter();
KernelResult result = KernelResult.Success;
KTlsPageInfo pageInfo = null;
if (_fullTlsPages.TryGetValue(tlsPageAddr, out pageInfo))
{
// TLS page was full, free slot and move to free pages tree.
_fullTlsPages.Remove(tlsPageAddr);
_freeTlsPages.Add(tlsPageAddr, pageInfo);
}
else if (!_freeTlsPages.TryGetValue(tlsPageAddr, out pageInfo))
{
result = KernelResult.InvalidAddress;
}
if (pageInfo != null)
{
pageInfo.FreeTlsSlot(tlsSlotAddr);
if (pageInfo.IsEmpty())
{
// TLS page is now empty, we should ensure it is removed
// from all trees, and free the memory it was using.
_freeTlsPages.Remove(tlsPageAddr);
KernelContext.CriticalSection.Leave();
FreeTlsPage(pageInfo);
return KernelResult.Success;
}
}
KernelContext.CriticalSection.Leave();
return result;
}
private KernelResult FreeTlsPage(KTlsPageInfo pageInfo)
{
if (!MemoryManager.ConvertVaToPa(pageInfo.PageAddr, out ulong tlsPagePa))
{
throw new InvalidOperationException("Unexpected failure translating virtual address to physical.");
}
KernelResult result = MemoryManager.UnmapForKernel(pageInfo.PageAddr, 1, MemoryState.ThreadLocal);
if (result == KernelResult.Success)
{
KernelContext.UserSlabHeapPages.Free(tlsPagePa);
}
return result;
}
private void GenerateRandomEntropy()
{
// TODO.
}
public KernelResult Start(int mainThreadPriority, ulong stackSize)
{
lock (_processLock)
{
if (State > ProcessState.CreatedAttached)
{
return KernelResult.InvalidState;
}
if (ResourceLimit != null && !ResourceLimit.Reserve(LimitableResource.Thread, 1))
{
return KernelResult.ResLimitExceeded;
}
KResourceLimit threadResourceLimit = ResourceLimit;
KResourceLimit memoryResourceLimit = null;
if (_mainThreadStackSize != 0)
{
throw new InvalidOperationException("Trying to start a process with a invalid state!");
}
ulong stackSizeRounded = BitUtils.AlignUp(stackSize, KMemoryManager.PageSize);
ulong neededSize = stackSizeRounded + _imageSize;
// Check if the needed size for the code and the stack will fit on the
// memory usage capacity of this Process. Also check for possible overflow
// on the above addition.
if (neededSize > _memoryUsageCapacity ||
neededSize < stackSizeRounded)
{
threadResourceLimit?.Release(LimitableResource.Thread, 1);
return KernelResult.OutOfMemory;
}
if (stackSizeRounded != 0 && ResourceLimit != null)
{
memoryResourceLimit = ResourceLimit;
if (!memoryResourceLimit.Reserve(LimitableResource.Memory, stackSizeRounded))
{
threadResourceLimit?.Release(LimitableResource.Thread, 1);
return KernelResult.ResLimitExceeded;
}
}
KernelResult result;
KThread mainThread = null;
ulong stackTop = 0;
void CleanUpForError()
{
HandleTable.Destroy();
mainThread?.DecrementReferenceCount();
if (_mainThreadStackSize != 0)
{
ulong stackBottom = stackTop - _mainThreadStackSize;
ulong stackPagesCount = _mainThreadStackSize / KMemoryManager.PageSize;
MemoryManager.UnmapForKernel(stackBottom, stackPagesCount, MemoryState.Stack);
_mainThreadStackSize = 0;
}
memoryResourceLimit?.Release(LimitableResource.Memory, stackSizeRounded);
threadResourceLimit?.Release(LimitableResource.Thread, 1);
}
if (stackSizeRounded != 0)
{
ulong stackPagesCount = stackSizeRounded / KMemoryManager.PageSize;
ulong regionStart = MemoryManager.StackRegionStart;
ulong regionSize = MemoryManager.StackRegionEnd - regionStart;
ulong regionPagesCount = regionSize / KMemoryManager.PageSize;
result = MemoryManager.AllocateOrMapPa(
stackPagesCount,
KMemoryManager.PageSize,
0,
false,
regionStart,
regionPagesCount,
MemoryState.Stack,
MemoryPermission.ReadAndWrite,
out ulong stackBottom);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
_mainThreadStackSize += stackSizeRounded;
stackTop = stackBottom + stackSizeRounded;
}
ulong heapCapacity = _memoryUsageCapacity - _mainThreadStackSize - _imageSize;
result = MemoryManager.SetHeapCapacity(heapCapacity);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
HandleTable = new KHandleTable(KernelContext);
result = HandleTable.Initialize(Capabilities.HandleTableSize);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
mainThread = new KThread(KernelContext);
result = mainThread.Initialize(
_entrypoint,
0,
stackTop,
mainThreadPriority,
DefaultCpuCore,
this);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
result = HandleTable.GenerateHandle(mainThread, out int mainThreadHandle);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
mainThread.SetEntryArguments(0, mainThreadHandle);
ProcessState oldState = State;
ProcessState newState = State != ProcessState.Created
? ProcessState.Attached
: ProcessState.Started;
SetState(newState);
// TODO: We can't call KThread.Start from a non-guest thread.
// We will need to make some changes to allow the creation of
// dummy threads that will be used to initialize the current
// thread on KCoreContext so that GetCurrentThread doesn't fail.
/* Result = MainThread.Start();
if (Result != KernelResult.Success)
{
SetState(OldState);
CleanUpForError();
} */
mainThread.Reschedule(ThreadSchedState.Running);
if (result == KernelResult.Success)
{
mainThread.IncrementReferenceCount();
}
mainThread.DecrementReferenceCount();
return result;
}
}
private void SetState(ProcessState newState)
{
if (State != newState)
{
State = newState;
_signaled = true;
Signal();
}
}
public KernelResult InitializeThread(
KThread thread,
ulong entrypoint,
ulong argsPtr,
ulong stackTop,
int priority,
int cpuCore)
{
lock (_processLock)
{
return thread.Initialize(entrypoint, argsPtr, stackTop, priority, cpuCore, this);
}
}
public void SubscribeThreadEventHandlers(ARMeilleure.State.ExecutionContext context)
{
context.Interrupt += InterruptHandler;
context.SupervisorCall += KernelContext.SyscallHandler.SvcCall;
context.Undefined += UndefinedInstructionHandler;
}
private void InterruptHandler(object sender, EventArgs e)
{
KernelContext.Scheduler.ContextSwitch();
}
public void IncrementThreadCount()
{
Interlocked.Increment(ref _threadCount);
KernelContext.ThreadCounter.AddCount();
}
public void DecrementThreadCountAndTerminateIfZero()
{
KernelContext.ThreadCounter.Signal();
if (Interlocked.Decrement(ref _threadCount) == 0)
{
Terminate();
}
}
public void DecrementToZeroWhileTerminatingCurrent()
{
KernelContext.ThreadCounter.Signal();
while (Interlocked.Decrement(ref _threadCount) != 0)
{
Destroy();
TerminateCurrentProcess();
}
// Nintendo panic here because if it reaches this point, the current thread should be already dead.
// As we handle the death of the thread in the post SVC handler and inside the CPU emulator, we don't panic here.
}
public ulong GetMemoryCapacity()
{
ulong totalCapacity = (ulong)ResourceLimit.GetRemainingValue(LimitableResource.Memory);
totalCapacity += MemoryManager.GetTotalHeapSize();
totalCapacity += GetPersonalMmHeapSize();
totalCapacity += _imageSize + _mainThreadStackSize;
if (totalCapacity <= _memoryUsageCapacity)
{
return totalCapacity;
}
return _memoryUsageCapacity;
}
public ulong GetMemoryUsage()
{
return _imageSize + _mainThreadStackSize + MemoryManager.GetTotalHeapSize() + GetPersonalMmHeapSize();
}
public ulong GetMemoryCapacityWithoutPersonalMmHeap()
{
return GetMemoryCapacity() - GetPersonalMmHeapSize();
}
public ulong GetMemoryUsageWithoutPersonalMmHeap()
{
return GetMemoryUsage() - GetPersonalMmHeapSize();
}
private ulong GetPersonalMmHeapSize()
{
return GetPersonalMmHeapSize(PersonalMmHeapPagesCount, _memRegion);
}
private static ulong GetPersonalMmHeapSize(ulong personalMmHeapPagesCount, MemoryRegion memRegion)
{
if (memRegion == MemoryRegion.Applet)
{
return 0;
}
return personalMmHeapPagesCount * KMemoryManager.PageSize;
}
public void AddThread(KThread thread)
{
lock (_threadingLock)
{
thread.ProcessListNode = _threads.AddLast(thread);
}
}
public void RemoveThread(KThread thread)
{
lock (_threadingLock)
{
_threads.Remove(thread.ProcessListNode);
}
}
public bool IsCpuCoreAllowed(int core)
{
return (Capabilities.AllowedCpuCoresMask & (1L << core)) != 0;
}
public bool IsPriorityAllowed(int priority)
{
return (Capabilities.AllowedThreadPriosMask & (1L << priority)) != 0;
}
public override bool IsSignaled()
{
return _signaled;
}
public KernelResult Terminate()
{
KernelResult result;
bool shallTerminate = false;
KernelContext.CriticalSection.Enter();
lock (_processLock)
{
if (State >= ProcessState.Started)
{
if (State == ProcessState.Started ||
State == ProcessState.Crashed ||
State == ProcessState.Attached ||
State == ProcessState.DebugSuspended)
{
SetState(ProcessState.Exiting);
shallTerminate = true;
}
result = KernelResult.Success;
}
else
{
result = KernelResult.InvalidState;
}
}
KernelContext.CriticalSection.Leave();
if (shallTerminate)
{
UnpauseAndTerminateAllThreadsExcept(KernelContext.Scheduler.GetCurrentThread());
HandleTable.Destroy();
SignalExitToDebugTerminated();
SignalExit();
}
return result;
}
public void TerminateCurrentProcess()
{
bool shallTerminate = false;
KernelContext.CriticalSection.Enter();
lock (_processLock)
{
if (State >= ProcessState.Started)
{
if (State == ProcessState.Started ||
State == ProcessState.Attached ||
State == ProcessState.DebugSuspended)
{
SetState(ProcessState.Exiting);
shallTerminate = true;
}
}
}
KernelContext.CriticalSection.Leave();
if (shallTerminate)
{
UnpauseAndTerminateAllThreadsExcept(KernelContext.Scheduler.GetCurrentThread());
HandleTable.Destroy();
// NOTE: this is supposed to be called in receiving of the mailbox.
SignalExitToDebugExited();
SignalExit();
}
}
private void UnpauseAndTerminateAllThreadsExcept(KThread currentThread)
{
lock (_threadingLock)
{
KernelContext.CriticalSection.Enter();
foreach (KThread thread in _threads)
{
if ((thread.SchedFlags & ThreadSchedState.LowMask) != ThreadSchedState.TerminationPending)
{
thread.PrepareForTermination();
}
}
KernelContext.CriticalSection.Leave();
}
KThread blockedThread = null;
lock (_threadingLock)
{
foreach (KThread thread in _threads)
{
if (thread != currentThread && (thread.SchedFlags & ThreadSchedState.LowMask) != ThreadSchedState.TerminationPending)
{
thread.IncrementReferenceCount();
blockedThread = thread;
break;
}
}
}
if (blockedThread != null)
{
blockedThread.Terminate();
blockedThread.DecrementReferenceCount();
}
}
private void SignalExitToDebugTerminated()
{
// TODO: Debug events.
}
private void SignalExitToDebugExited()
{
// TODO: Debug events.
}
private void SignalExit()
{
if (ResourceLimit != null)
{
ResourceLimit.Release(LimitableResource.Memory, GetMemoryUsage());
}
KernelContext.CriticalSection.Enter();
SetState(ProcessState.Exited);
KernelContext.CriticalSection.Leave();
}
public KernelResult ClearIfNotExited()
{
KernelResult result;
KernelContext.CriticalSection.Enter();
lock (_processLock)
{
if (State != ProcessState.Exited && _signaled)
{
_signaled = false;
result = KernelResult.Success;
}
else
{
result = KernelResult.InvalidState;
}
}
KernelContext.CriticalSection.Leave();
return result;
}
public void StopAllThreads()
{
lock (_threadingLock)
{
foreach (KThread thread in _threads)
{
KernelContext.Scheduler.ExitThread(thread);
KernelContext.Scheduler.CoreManager.Set(thread.HostThread);
}
}
}
private void InitializeMemoryManager(AddressSpaceType addrSpaceType, MemoryRegion memRegion)
{
int addrSpaceBits = addrSpaceType switch
{
AddressSpaceType.Addr32Bits => 32,
AddressSpaceType.Addr36Bits => 36,
AddressSpaceType.Addr32BitsNoMap => 32,
AddressSpaceType.Addr39Bits => 39,
_ => throw new ArgumentException(nameof(addrSpaceType))
};
CpuMemory = new MemoryManager(KernelContext.Memory, 1UL << addrSpaceBits);
CpuContext = new CpuContext(CpuMemory);
// TODO: This should eventually be removed.
// The GPU shouldn't depend on the CPU memory manager at all.
KernelContext.Device.Gpu.SetVmm(CpuMemory);
MemoryManager = new KMemoryManager(KernelContext, CpuMemory);
}
public void PrintCurrentThreadStackTrace()
{
KernelContext.Scheduler.GetCurrentThread().PrintGuestStackTrace();
}
private void UndefinedInstructionHandler(object sender, InstUndefinedEventArgs e)
{
throw new UndefinedInstructionException(e.Address, e.OpCode);
}
protected override void Destroy()
{
CpuMemory.Dispose();
}
}
}