Ryujinx/ChocolArm64/Instruction/ASoftFallback.cs
LDj3SNuD 02a6fdcd13 Add Sqdmulh_S, Sqdmulh_V, Sqrdmulh_S, Sqrdmulh_V instructions; add 6 Tests. Now all saturating methods are on ASoftFallback. (#334)
* Update Instructions.cs

* Update CpuTestSimd.cs

* Update CpuTestSimdReg.cs

* Update AOpCodeTable.cs

* Update AInstEmitSimdArithmetic.cs

* Update AInstEmitSimdHelper.cs

* Update ASoftFallback.cs

* Update CpuTestAlu.cs

* Update CpuTestAluImm.cs

* Update CpuTestAluRs.cs

* Update CpuTestAluRx.cs

* Update CpuTestBfm.cs

* Update CpuTestCcmpImm.cs

* Update CpuTestCcmpReg.cs

* Update CpuTestCsel.cs

* Update CpuTestMov.cs

* Update CpuTestMul.cs

* Update Ryujinx.Tests.csproj

* Update Ryujinx.csproj

* Update Luea.csproj

* Update Ryujinx.ShaderTools.csproj

* Address PR feedback (further tested).

* Address PR feedback.
2018-08-10 14:27:15 -03:00

507 lines
14 KiB
C#

using ChocolArm64.State;
using ChocolArm64.Translation;
using System;
namespace ChocolArm64.Instruction
{
static class ASoftFallback
{
public static void EmitCall(AILEmitterCtx Context, string MthdName)
{
Context.EmitCall(typeof(ASoftFallback), MthdName);
}
#region "Saturating"
public static long SignedSrcSignedDstSatQ(long op, int Size, AThreadState State)
{
int ESize = 8 << Size;
long TMaxValue = (1L << (ESize - 1)) - 1L;
long TMinValue = -(1L << (ESize - 1));
if (op > TMaxValue)
{
SetFpsrQCFlag(State);
return TMaxValue;
}
else if (op < TMinValue)
{
SetFpsrQCFlag(State);
return TMinValue;
}
else
{
return op;
}
}
public static ulong SignedSrcUnsignedDstSatQ(long op, int Size, AThreadState State)
{
int ESize = 8 << Size;
ulong TMaxValue = (1UL << ESize) - 1UL;
ulong TMinValue = 0UL;
if (op > (long)TMaxValue)
{
SetFpsrQCFlag(State);
return TMaxValue;
}
else if (op < (long)TMinValue)
{
SetFpsrQCFlag(State);
return TMinValue;
}
else
{
return (ulong)op;
}
}
public static long UnsignedSrcSignedDstSatQ(ulong op, int Size, AThreadState State)
{
int ESize = 8 << Size;
long TMaxValue = (1L << (ESize - 1)) - 1L;
if (op > (ulong)TMaxValue)
{
SetFpsrQCFlag(State);
return TMaxValue;
}
else
{
return (long)op;
}
}
public static ulong UnsignedSrcUnsignedDstSatQ(ulong op, int Size, AThreadState State)
{
int ESize = 8 << Size;
ulong TMaxValue = (1UL << ESize) - 1UL;
if (op > TMaxValue)
{
SetFpsrQCFlag(State);
return TMaxValue;
}
else
{
return op;
}
}
public static long UnarySignedSatQAbsOrNeg(long op, AThreadState State)
{
if (op == long.MinValue)
{
SetFpsrQCFlag(State);
return long.MaxValue;
}
else
{
return op;
}
}
public static long BinarySignedSatQAdd(long op1, long op2, AThreadState State)
{
long Add = op1 + op2;
if ((~(op1 ^ op2) & (op1 ^ Add)) < 0L)
{
SetFpsrQCFlag(State);
if (op1 < 0L)
{
return long.MinValue;
}
else
{
return long.MaxValue;
}
}
else
{
return Add;
}
}
public static ulong BinaryUnsignedSatQAdd(ulong op1, ulong op2, AThreadState State)
{
ulong Add = op1 + op2;
if ((Add < op1) && (Add < op2))
{
SetFpsrQCFlag(State);
return ulong.MaxValue;
}
else
{
return Add;
}
}
public static long BinarySignedSatQSub(long op1, long op2, AThreadState State)
{
long Sub = op1 - op2;
if (((op1 ^ op2) & (op1 ^ Sub)) < 0L)
{
SetFpsrQCFlag(State);
if (op1 < 0L)
{
return long.MinValue;
}
else
{
return long.MaxValue;
}
}
else
{
return Sub;
}
}
public static ulong BinaryUnsignedSatQSub(ulong op1, ulong op2, AThreadState State)
{
ulong Sub = op1 - op2;
if (op1 < op2)
{
SetFpsrQCFlag(State);
return ulong.MinValue;
}
else
{
return Sub;
}
}
public static long BinarySignedSatQAcc(ulong op1, long op2, AThreadState State)
{
if (op1 <= (ulong)long.MaxValue)
{
// op1 from ulong.MinValue to (ulong)long.MaxValue
// op2 from long.MinValue to long.MaxValue
long Add = (long)op1 + op2;
if ((~op2 & Add) < 0L)
{
SetFpsrQCFlag(State);
return long.MaxValue;
}
else
{
return Add;
}
}
else if (op2 >= 0L)
{
// op1 from (ulong)long.MaxValue + 1UL to ulong.MaxValue
// op2 from (long)ulong.MinValue to long.MaxValue
SetFpsrQCFlag(State);
return long.MaxValue;
}
else
{
// op1 from (ulong)long.MaxValue + 1UL to ulong.MaxValue
// op2 from long.MinValue to (long)ulong.MinValue - 1L
ulong Add = op1 + (ulong)op2;
if (Add > (ulong)long.MaxValue)
{
SetFpsrQCFlag(State);
return long.MaxValue;
}
else
{
return (long)Add;
}
}
}
public static ulong BinaryUnsignedSatQAcc(long op1, ulong op2, AThreadState State)
{
if (op1 >= 0L)
{
// op1 from (long)ulong.MinValue to long.MaxValue
// op2 from ulong.MinValue to ulong.MaxValue
ulong Add = (ulong)op1 + op2;
if ((Add < (ulong)op1) && (Add < op2))
{
SetFpsrQCFlag(State);
return ulong.MaxValue;
}
else
{
return Add;
}
}
else if (op2 > (ulong)long.MaxValue)
{
// op1 from long.MinValue to (long)ulong.MinValue - 1L
// op2 from (ulong)long.MaxValue + 1UL to ulong.MaxValue
return (ulong)op1 + op2;
}
else
{
// op1 from long.MinValue to (long)ulong.MinValue - 1L
// op2 from ulong.MinValue to (ulong)long.MaxValue
long Add = op1 + (long)op2;
if (Add < (long)ulong.MinValue)
{
SetFpsrQCFlag(State);
return ulong.MinValue;
}
else
{
return (ulong)Add;
}
}
}
private static void SetFpsrQCFlag(AThreadState State)
{
const int QCFlagBit = 27;
State.Fpsr |= 1 << QCFlagBit;
}
#endregion
#region "Count"
public static ulong CountLeadingSigns(ulong Value, int Size)
{
Value ^= Value >> 1;
int HighBit = Size - 2;
for (int Bit = HighBit; Bit >= 0; Bit--)
{
if (((Value >> Bit) & 0b1) != 0)
{
return (ulong)(HighBit - Bit);
}
}
return (ulong)(Size - 1);
}
private static readonly byte[] ClzNibbleTbl = { 4, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 };
public static ulong CountLeadingZeros(ulong Value, int Size)
{
if (Value == 0)
{
return (ulong)Size;
}
int NibbleIdx = Size;
int PreCount, Count = 0;
do
{
NibbleIdx -= 4;
PreCount = ClzNibbleTbl[(Value >> NibbleIdx) & 0b1111];
Count += PreCount;
}
while (PreCount == 4);
return (ulong)Count;
}
public static uint CountSetBits8(uint Value)
{
Value = ((Value >> 1) & 0x55) + (Value & 0x55);
Value = ((Value >> 2) & 0x33) + (Value & 0x33);
return (Value >> 4) + (Value & 0x0f);
}
#endregion
#region "Crc32"
private const uint Crc32RevPoly = 0xedb88320;
private const uint Crc32cRevPoly = 0x82f63b78;
public static uint Crc32b(uint Crc, byte Val) => Crc32 (Crc, Crc32RevPoly, Val);
public static uint Crc32h(uint Crc, ushort Val) => Crc32h(Crc, Crc32RevPoly, Val);
public static uint Crc32w(uint Crc, uint Val) => Crc32w(Crc, Crc32RevPoly, Val);
public static uint Crc32x(uint Crc, ulong Val) => Crc32x(Crc, Crc32RevPoly, Val);
public static uint Crc32cb(uint Crc, byte Val) => Crc32 (Crc, Crc32cRevPoly, Val);
public static uint Crc32ch(uint Crc, ushort Val) => Crc32h(Crc, Crc32cRevPoly, Val);
public static uint Crc32cw(uint Crc, uint Val) => Crc32w(Crc, Crc32cRevPoly, Val);
public static uint Crc32cx(uint Crc, ulong Val) => Crc32x(Crc, Crc32cRevPoly, Val);
private static uint Crc32h(uint Crc, uint Poly, ushort Val)
{
Crc = Crc32(Crc, Poly, (byte)(Val >> 0));
Crc = Crc32(Crc, Poly, (byte)(Val >> 8));
return Crc;
}
private static uint Crc32w(uint Crc, uint Poly, uint Val)
{
Crc = Crc32(Crc, Poly, (byte)(Val >> 0 ));
Crc = Crc32(Crc, Poly, (byte)(Val >> 8 ));
Crc = Crc32(Crc, Poly, (byte)(Val >> 16));
Crc = Crc32(Crc, Poly, (byte)(Val >> 24));
return Crc;
}
private static uint Crc32x(uint Crc, uint Poly, ulong Val)
{
Crc = Crc32(Crc, Poly, (byte)(Val >> 0 ));
Crc = Crc32(Crc, Poly, (byte)(Val >> 8 ));
Crc = Crc32(Crc, Poly, (byte)(Val >> 16));
Crc = Crc32(Crc, Poly, (byte)(Val >> 24));
Crc = Crc32(Crc, Poly, (byte)(Val >> 32));
Crc = Crc32(Crc, Poly, (byte)(Val >> 40));
Crc = Crc32(Crc, Poly, (byte)(Val >> 48));
Crc = Crc32(Crc, Poly, (byte)(Val >> 56));
return Crc;
}
private static uint Crc32(uint Crc, uint Poly, byte Val)
{
Crc ^= Val;
for (int Bit = 7; Bit >= 0; Bit--)
{
uint Mask = (uint)(-(int)(Crc & 1));
Crc = (Crc >> 1) ^ (Poly & Mask);
}
return Crc;
}
#endregion
#region "Reverse"
public static uint ReverseBits8(uint Value)
{
Value = ((Value & 0xaa) >> 1) | ((Value & 0x55) << 1);
Value = ((Value & 0xcc) >> 2) | ((Value & 0x33) << 2);
return (Value >> 4) | ((Value & 0x0f) << 4);
}
public static uint ReverseBits32(uint Value)
{
Value = ((Value & 0xaaaaaaaa) >> 1) | ((Value & 0x55555555) << 1);
Value = ((Value & 0xcccccccc) >> 2) | ((Value & 0x33333333) << 2);
Value = ((Value & 0xf0f0f0f0) >> 4) | ((Value & 0x0f0f0f0f) << 4);
Value = ((Value & 0xff00ff00) >> 8) | ((Value & 0x00ff00ff) << 8);
return (Value >> 16) | (Value << 16);
}
public static ulong ReverseBits64(ulong Value)
{
Value = ((Value & 0xaaaaaaaaaaaaaaaa) >> 1 ) | ((Value & 0x5555555555555555) << 1 );
Value = ((Value & 0xcccccccccccccccc) >> 2 ) | ((Value & 0x3333333333333333) << 2 );
Value = ((Value & 0xf0f0f0f0f0f0f0f0) >> 4 ) | ((Value & 0x0f0f0f0f0f0f0f0f) << 4 );
Value = ((Value & 0xff00ff00ff00ff00) >> 8 ) | ((Value & 0x00ff00ff00ff00ff) << 8 );
Value = ((Value & 0xffff0000ffff0000) >> 16) | ((Value & 0x0000ffff0000ffff) << 16);
return (Value >> 32) | (Value << 32);
}
public static uint ReverseBytes16_32(uint Value) => (uint)ReverseBytes16_64(Value);
public static uint ReverseBytes32_32(uint Value) => (uint)ReverseBytes32_64(Value);
public static ulong ReverseBytes16_64(ulong Value) => ReverseBytes(Value, RevSize.Rev16);
public static ulong ReverseBytes32_64(ulong Value) => ReverseBytes(Value, RevSize.Rev32);
public static ulong ReverseBytes64(ulong Value) => ReverseBytes(Value, RevSize.Rev64);
private enum RevSize
{
Rev16,
Rev32,
Rev64
}
private static ulong ReverseBytes(ulong Value, RevSize Size)
{
Value = ((Value & 0xff00ff00ff00ff00) >> 8) | ((Value & 0x00ff00ff00ff00ff) << 8);
if (Size == RevSize.Rev16)
{
return Value;
}
Value = ((Value & 0xffff0000ffff0000) >> 16) | ((Value & 0x0000ffff0000ffff) << 16);
if (Size == RevSize.Rev32)
{
return Value;
}
Value = ((Value & 0xffffffff00000000) >> 32) | ((Value & 0x00000000ffffffff) << 32);
if (Size == RevSize.Rev64)
{
return Value;
}
throw new ArgumentException(nameof(Size));
}
#endregion
#region "MultiplyHigh"
public static long SMulHi128(long LHS, long RHS)
{
long Result = (long)UMulHi128((ulong)LHS, (ulong)RHS);
if (LHS < 0) Result -= RHS;
if (RHS < 0) Result -= LHS;
return Result;
}
public static ulong UMulHi128(ulong LHS, ulong RHS)
{
//long multiplication
//multiply 32 bits at a time in 64 bit, the result is what's carried over 64 bits.
ulong LHigh = LHS >> 32;
ulong LLow = LHS & 0xFFFFFFFF;
ulong RHigh = RHS >> 32;
ulong RLow = RHS & 0xFFFFFFFF;
ulong Z2 = LLow * RLow;
ulong T = LHigh * RLow + (Z2 >> 32);
ulong Z1 = T & 0xFFFFFFFF;
ulong Z0 = T >> 32;
Z1 += LLow * RHigh;
return LHigh * RHigh + Z0 + (Z1 >> 32);
}
#endregion
}
}