Ryujinx/Ryujinx.Graphics.Nvdec.Vp9/Types/Vp9Common.cs
gdkchan c465d771dd
Enable multithreaded VP9 decoding (#2009)
* Enable multithreaded VP9 decoding

* Limit the number of threads used for video decoding
2021-02-11 01:54:42 +01:00

331 lines
11 KiB
C#

using Ryujinx.Common.Memory;
using Ryujinx.Graphics.Nvdec.Vp9.Common;
using Ryujinx.Graphics.Video;
namespace Ryujinx.Graphics.Nvdec.Vp9.Types
{
internal struct Vp9Common
{
public MacroBlockD Mb;
public ArrayPtr<TileWorkerData> TileWorkerData;
public InternalErrorInfo Error;
public int Width;
public int Height;
public int SubsamplingX;
public int SubsamplingY;
public ArrayPtr<MvRef> PrevFrameMvs;
public ArrayPtr<MvRef> CurFrameMvs;
public Array3<RefBuffer> FrameRefs;
public FrameType FrameType;
// Flag signaling that the frame is encoded using only Intra modes.
public bool IntraOnly;
public bool AllowHighPrecisionMv;
// MBs, MbRows/Cols is in 16-pixel units; MiRows/Cols is in
// ModeInfo (8-pixel) units.
public int MBs;
public int MbRows, MiRows;
public int MbCols, MiCols;
public int MiStride;
/* Profile settings */
public TxMode TxMode;
public int BaseQindex;
public int YDcDeltaQ;
public int UvDcDeltaQ;
public int UvAcDeltaQ;
public Array8<Array2<short>> YDequant;
public Array8<Array2<short>> UvDequant;
/* We allocate a ModeInfo struct for each macroblock, together with
an extra row on top and column on the left to simplify prediction. */
public ArrayPtr<ModeInfo> Mip; /* Base of allocated array */
public ArrayPtr<ModeInfo> Mi; /* Corresponds to upper left visible macroblock */
public ArrayPtr<Ptr<ModeInfo>> MiGridBase;
public ArrayPtr<Ptr<ModeInfo>> MiGridVisible;
// Whether to use previous frame's motion vectors for prediction.
public bool UsePrevFrameMvs;
// Persistent mb segment id map used in prediction.
public int SegMapIdx;
public int PrevSegMapIdx;
public Array2<ArrayPtr<byte>> SegMapArray;
public ArrayPtr<byte> LastFrameSegMap;
public ArrayPtr<byte> CurrentFrameSegMap;
public byte InterpFilter;
public LoopFilterInfoN LfInfo;
public Array4<sbyte> RefFrameSignBias; /* Two state 0, 1 */
public LoopFilter Lf;
public Segmentation Seg;
// Context probabilities for reference frame prediction
public sbyte CompFixedRef;
public Array2<sbyte> CompVarRef;
public ReferenceMode ReferenceMode;
public Ptr<Vp9EntropyProbs> Fc;
public Ptr<Vp9BackwardUpdates> Counts;
public int Log2TileCols, Log2TileRows;
public ArrayPtr<sbyte> AboveSegContext;
public ArrayPtr<sbyte> AboveContext;
public bool FrameIsIntraOnly()
{
return FrameType == FrameType.KeyFrame || IntraOnly;
}
public bool CompoundReferenceAllowed()
{
int i;
for (i = 1; i < Constants.RefsPerFrame; ++i)
{
if (RefFrameSignBias[i + 1] != RefFrameSignBias[1])
{
return true;
}
}
return false;
}
private static int CalcMiSize(int len)
{
// Len is in mi units.
return len + Constants.MiBlockSize;
}
public void SetMbMi(int width, int height)
{
int alignedWidth = BitUtils.AlignPowerOfTwo(width, Constants.MiSizeLog2);
int alignedHeight = BitUtils.AlignPowerOfTwo(height, Constants.MiSizeLog2);
MiCols = alignedWidth >> Constants.MiSizeLog2;
MiRows = alignedHeight >> Constants.MiSizeLog2;
MiStride = CalcMiSize(MiCols);
MbCols = (MiCols + 1) >> 1;
MbRows = (MiRows + 1) >> 1;
MBs = MbRows * MbCols;
}
public void AllocTileWorkerData(MemoryAllocator allocator, int tileCols, int tileRows, int maxThreads)
{
TileWorkerData = allocator.Allocate<TileWorkerData>(tileCols * tileRows + (maxThreads > 1 ? maxThreads : 0));
}
public void FreeTileWorkerData(MemoryAllocator allocator)
{
allocator.Free(TileWorkerData);
}
private void AllocSegMap(MemoryAllocator allocator, int segMapSize)
{
int i;
for (i = 0; i < Constants.NumPingPongBuffers; ++i)
{
SegMapArray[i] = allocator.Allocate<byte>(segMapSize);
}
// Init the index.
SegMapIdx = 0;
PrevSegMapIdx = 1;
CurrentFrameSegMap = SegMapArray[SegMapIdx];
LastFrameSegMap = SegMapArray[PrevSegMapIdx];
}
private void FreeSegMap(MemoryAllocator allocator)
{
int i;
for (i = 0; i < Constants.NumPingPongBuffers; ++i)
{
allocator.Free(SegMapArray[i]);
SegMapArray[i] = ArrayPtr<byte>.Null;
}
CurrentFrameSegMap = ArrayPtr<byte>.Null;
LastFrameSegMap = ArrayPtr<byte>.Null;
}
private void DecAllocMi(MemoryAllocator allocator, int miSize)
{
Mip = allocator.Allocate<ModeInfo>(miSize);
MiGridBase = allocator.Allocate<Ptr<ModeInfo>>(miSize);
}
private void DecFreeMi(MemoryAllocator allocator)
{
allocator.Free(Mip);
Mip = ArrayPtr<ModeInfo>.Null;
allocator.Free(MiGridBase);
MiGridBase = ArrayPtr<Ptr<ModeInfo>>.Null;
}
public void FreeContextBuffers(MemoryAllocator allocator)
{
DecFreeMi(allocator);
FreeSegMap(allocator);
allocator.Free(AboveContext);
AboveContext = ArrayPtr<sbyte>.Null;
allocator.Free(AboveSegContext);
AboveSegContext = ArrayPtr<sbyte>.Null;
allocator.Free(Lf.Lfm);
Lf.Lfm = ArrayPtr<LoopFilterMask>.Null;
allocator.Free(CurFrameMvs);
CurFrameMvs = ArrayPtr<MvRef>.Null;
if (UsePrevFrameMvs)
{
allocator.Free(PrevFrameMvs);
PrevFrameMvs = ArrayPtr<MvRef>.Null;
}
}
private void AllocLoopFilter(MemoryAllocator allocator)
{
// Each lfm holds bit masks for all the 8x8 blocks in a 64x64 region. The
// stride and rows are rounded up / truncated to a multiple of 8.
Lf.LfmStride = (MiCols + (Constants.MiBlockSize - 1)) >> 3;
Lf.Lfm = allocator.Allocate<LoopFilterMask>(((MiRows + (Constants.MiBlockSize - 1)) >> 3) * Lf.LfmStride);
}
public void AllocContextBuffers(MemoryAllocator allocator, int width, int height)
{
SetMbMi(width, height);
int newMiSize = MiStride * CalcMiSize(MiRows);
if (newMiSize != 0)
{
DecAllocMi(allocator, newMiSize);
}
if (MiRows * MiCols != 0)
{
// Create the segmentation map structure and set to 0.
AllocSegMap(allocator, MiRows * MiCols);
}
if (MiCols != 0)
{
AboveContext = allocator.Allocate<sbyte>(2 * TileInfo.MiColsAlignedToSb(MiCols) * Constants.MaxMbPlane);
AboveSegContext = allocator.Allocate<sbyte>(TileInfo.MiColsAlignedToSb(MiCols));
}
AllocLoopFilter(allocator);
CurFrameMvs = allocator.Allocate<MvRef>(MiRows * MiCols);
// Using the same size as the current frame is fine here,
// as this is never true when we have a resolution change.
if (UsePrevFrameMvs)
{
PrevFrameMvs = allocator.Allocate<MvRef>(MiRows * MiCols);
}
}
private unsafe void DecSetupMi()
{
Mi = Mip.Slice(MiStride + 1);
MiGridVisible = MiGridBase.Slice(MiStride + 1);
MemoryUtil.Fill(MiGridBase.ToPointer(), Ptr<ModeInfo>.Null, MiStride * (MiRows + 1));
}
public unsafe void InitContextBuffers()
{
DecSetupMi();
if (!LastFrameSegMap.IsNull)
{
MemoryUtil.Fill(LastFrameSegMap.ToPointer(), (byte)0, MiRows * MiCols);
}
}
private void SetPartitionProbs(ref MacroBlockD xd)
{
xd.PartitionProbs = FrameIsIntraOnly()
? new ArrayPtr<Array3<byte>>(ref Fc.Value.KfPartitionProb[0], 16)
: new ArrayPtr<Array3<byte>>(ref Fc.Value.PartitionProb[0], 16);
}
internal void InitMacroBlockD(ref MacroBlockD xd, ArrayPtr<int> dqcoeff)
{
int i;
for (i = 0; i < Constants.MaxMbPlane; ++i)
{
xd.Plane[i].DqCoeff = dqcoeff;
xd.AboveContext[i] = AboveContext.Slice(i * 2 * TileInfo.MiColsAlignedToSb(MiCols));
if (i == 0)
{
MemoryUtil.Copy(ref xd.Plane[i].SegDequant, ref YDequant);
}
else
{
MemoryUtil.Copy(ref xd.Plane[i].SegDequant, ref UvDequant);
}
xd.Fc = new Ptr<Vp9EntropyProbs>(ref Fc.Value);
}
xd.AboveSegContext = AboveSegContext;
xd.MiStride = MiStride;
xd.ErrorInfo = new Ptr<InternalErrorInfo>(ref Error);
SetPartitionProbs(ref xd);
}
public void SetupSegmentationDequant()
{
const BitDepth bitDepth = BitDepth.Bits8; // TODO: Configurable
// Build y/uv dequant values based on segmentation.
if (Seg.Enabled)
{
int i;
for (i = 0; i < Constants.MaxSegments; ++i)
{
int qIndex = QuantCommon.GetQIndex(ref Seg, i, BaseQindex);
YDequant[i][0] = QuantCommon.DcQuant(qIndex, YDcDeltaQ, bitDepth);
YDequant[i][1] = QuantCommon.AcQuant(qIndex, 0, bitDepth);
UvDequant[i][0] = QuantCommon.DcQuant(qIndex, UvDcDeltaQ, bitDepth);
UvDequant[i][1] = QuantCommon.AcQuant(qIndex, UvAcDeltaQ, bitDepth);
}
}
else
{
int qIndex = BaseQindex;
// When segmentation is disabled, only the first value is used. The
// remaining are don't cares.
YDequant[0][0] = QuantCommon.DcQuant(qIndex, YDcDeltaQ, bitDepth);
YDequant[0][1] = QuantCommon.AcQuant(qIndex, 0, bitDepth);
UvDequant[0][0] = QuantCommon.DcQuant(qIndex, UvDcDeltaQ, bitDepth);
UvDequant[0][1] = QuantCommon.AcQuant(qIndex, UvAcDeltaQ, bitDepth);
}
}
public void SetupScaleFactors()
{
for (int i = 0; i < Constants.RefsPerFrame; ++i)
{
ref RefBuffer refBuf = ref FrameRefs[i];
refBuf.Sf.SetupScaleFactorsForFrame(refBuf.Buf.Width, refBuf.Buf.Height, Width, Height);
}
}
}
}