Ryujinx/Ryujinx.Graphics/Graphics3d/NvGpuEngine3d.cs
gdkchan 6b23a2c125 New shader translator implementation (#654)
* Start implementing a new shader translator

* Fix shift instructions and a typo

* Small refactoring on StructuredProgram, move RemovePhis method to a separate class

* Initial geometry shader support

* Implement TLD4

* Fix -- There's no negation on FMUL32I

* Add constant folding and algebraic simplification optimizations, nits

* Some leftovers from constant folding

* Avoid cast for constant assignments

* Add a branch elimination pass, and misc small fixes

* Remove redundant branches, add expression propagation and other improvements on the code

* Small leftovers -- add missing break and continue, remove unused properties, other improvements

* Add null check to handle empty block cases on block visitor

* Add HADD2 and HMUL2 half float shader instructions

* Optimize pack/unpack sequences, some fixes related to half float instructions

* Add TXQ, TLD, TLDS and TLD4S shader texture instructions, and some support for bindless textures, some refactoring on codegen

* Fix copy paste mistake that caused RZ to be ignored on the AST instruction

* Add workaround for conditional exit, and fix half float instruction with constant buffer

* Add missing 0.0 source for TLDS.LZ variants

* Simplify the switch for TLDS.LZ

* Texture instructions related fixes

* Implement the HFMA instruction, and some misc. fixes

* Enable constant folding on UnpackHalf2x16 instructions

* Refactor HFMA to use OpCode* for opcode decoding rather than on the helper methods

* Remove the old shader translator

* Remove ShaderDeclInfo and other unused things

* Add dual vertex shader support

* Add ShaderConfig, used to pass shader type and maximum cbuffer size

* Move and rename some instruction enums

* Move texture instructions into a separate file

* Move operand GetExpression and locals management to OperandManager

* Optimize opcode decoding using a simple list and binary search

* Add missing condition for do-while on goto elimination

* Misc. fixes on texture instructions

* Simplify TLDS switch

* Address PR feedback, and a nit
2019-04-18 09:57:08 +10:00

1178 lines
45 KiB
C#

using Ryujinx.Common;
using Ryujinx.Graphics.Gal;
using Ryujinx.Graphics.Memory;
using Ryujinx.Graphics.Shader;
using Ryujinx.Graphics.Texture;
using System;
using System.Collections.Generic;
namespace Ryujinx.Graphics.Graphics3d
{
class NvGpuEngine3d : INvGpuEngine
{
public int[] Registers { get; private set; }
private NvGpu _gpu;
private Dictionary<int, NvGpuMethod> _methods;
private struct ConstBuffer
{
public bool Enabled;
public long Position;
public int Size;
}
private ConstBuffer[][] _constBuffers;
// Viewport dimensions kept for scissor test limits
private int _viewportX0 = 0;
private int _viewportY0 = 0;
private int _viewportX1 = 0;
private int _viewportY1 = 0;
private int _viewportWidth = 0;
private int _viewportHeight = 0;
private int _currentInstance = 0;
public NvGpuEngine3d(NvGpu gpu)
{
_gpu = gpu;
Registers = new int[0xe00];
_methods = new Dictionary<int, NvGpuMethod>();
void AddMethod(int meth, int count, int stride, NvGpuMethod method)
{
while (count-- > 0)
{
_methods.Add(meth, method);
meth += stride;
}
}
AddMethod(0x585, 1, 1, VertexEndGl);
AddMethod(0x674, 1, 1, ClearBuffers);
AddMethod(0x6c3, 1, 1, QueryControl);
AddMethod(0x8e4, 16, 1, CbData);
AddMethod(0x904, 5, 8, CbBind);
_constBuffers = new ConstBuffer[6][];
for (int index = 0; index < _constBuffers.Length; index++)
{
_constBuffers[index] = new ConstBuffer[18];
}
//Ensure that all components are enabled by default.
//FIXME: Is this correct?
WriteRegister(NvGpuEngine3dReg.ColorMaskN, 0x1111);
WriteRegister(NvGpuEngine3dReg.FrameBufferSrgb, 1);
WriteRegister(NvGpuEngine3dReg.FrontFace, (int)GalFrontFace.Cw);
for (int index = 0; index < GalPipelineState.RenderTargetsCount; index++)
{
WriteRegister(NvGpuEngine3dReg.IBlendNEquationRgb + index * 8, (int)GalBlendEquation.FuncAdd);
WriteRegister(NvGpuEngine3dReg.IBlendNFuncSrcRgb + index * 8, (int)GalBlendFactor.One);
WriteRegister(NvGpuEngine3dReg.IBlendNFuncDstRgb + index * 8, (int)GalBlendFactor.Zero);
WriteRegister(NvGpuEngine3dReg.IBlendNEquationAlpha + index * 8, (int)GalBlendEquation.FuncAdd);
WriteRegister(NvGpuEngine3dReg.IBlendNFuncSrcAlpha + index * 8, (int)GalBlendFactor.One);
WriteRegister(NvGpuEngine3dReg.IBlendNFuncDstAlpha + index * 8, (int)GalBlendFactor.Zero);
}
}
public void CallMethod(NvGpuVmm vmm, GpuMethodCall methCall)
{
if (_methods.TryGetValue(methCall.Method, out NvGpuMethod method))
{
method(vmm, methCall);
}
else
{
WriteRegister(methCall);
}
}
private void VertexEndGl(NvGpuVmm vmm, GpuMethodCall methCall)
{
LockCaches();
GalPipelineState state = new GalPipelineState();
// Framebuffer must be run configured because viewport dimensions may be used in other methods
SetFrameBuffer(state);
for (int fbIndex = 0; fbIndex < 8; fbIndex++)
{
SetFrameBuffer(vmm, fbIndex);
}
SetFrontFace(state);
SetCullFace(state);
SetDepth(state);
SetStencil(state);
SetScissor(state);
SetBlending(state);
SetColorMask(state);
SetPrimitiveRestart(state);
SetZeta(vmm);
SetRenderTargets();
long[] keys = UploadShaders(vmm);
_gpu.Renderer.Shader.BindProgram();
UploadTextures(vmm, state, keys);
UploadConstBuffers(vmm, state, keys);
UploadVertexArrays(vmm, state);
DispatchRender(vmm, state);
UnlockCaches();
}
private void LockCaches()
{
_gpu.Renderer.Buffer.LockCache();
_gpu.Renderer.Rasterizer.LockCaches();
_gpu.Renderer.Texture.LockCache();
}
private void UnlockCaches()
{
_gpu.Renderer.Buffer.UnlockCache();
_gpu.Renderer.Rasterizer.UnlockCaches();
_gpu.Renderer.Texture.UnlockCache();
}
private void ClearBuffers(NvGpuVmm vmm, GpuMethodCall methCall)
{
int attachment = (methCall.Argument >> 6) & 0xf;
GalClearBufferFlags flags = (GalClearBufferFlags)(methCall.Argument & 0x3f);
float red = ReadRegisterFloat(NvGpuEngine3dReg.ClearNColor + 0);
float green = ReadRegisterFloat(NvGpuEngine3dReg.ClearNColor + 1);
float blue = ReadRegisterFloat(NvGpuEngine3dReg.ClearNColor + 2);
float alpha = ReadRegisterFloat(NvGpuEngine3dReg.ClearNColor + 3);
float depth = ReadRegisterFloat(NvGpuEngine3dReg.ClearDepth);
int stencil = ReadRegister(NvGpuEngine3dReg.ClearStencil);
SetFrameBuffer(vmm, attachment);
SetZeta(vmm);
SetRenderTargets();
_gpu.Renderer.RenderTarget.Bind();
_gpu.Renderer.Rasterizer.ClearBuffers(flags, attachment, red, green, blue, alpha, depth, stencil);
_gpu.Renderer.Pipeline.ResetDepthMask();
_gpu.Renderer.Pipeline.ResetColorMask(attachment);
}
private void SetFrameBuffer(NvGpuVmm vmm, int fbIndex)
{
long va = MakeInt64From2xInt32(NvGpuEngine3dReg.FrameBufferNAddress + fbIndex * 0x10);
int surfFormat = ReadRegister(NvGpuEngine3dReg.FrameBufferNFormat + fbIndex * 0x10);
if (va == 0 || surfFormat == 0)
{
_gpu.Renderer.RenderTarget.UnbindColor(fbIndex);
return;
}
long key = vmm.GetPhysicalAddress(va);
int width = ReadRegister(NvGpuEngine3dReg.FrameBufferNWidth + fbIndex * 0x10);
int height = ReadRegister(NvGpuEngine3dReg.FrameBufferNHeight + fbIndex * 0x10);
int arrayMode = ReadRegister(NvGpuEngine3dReg.FrameBufferNArrayMode + fbIndex * 0x10);
int layerCount = arrayMode & 0xFFFF;
int layerStride = ReadRegister(NvGpuEngine3dReg.FrameBufferNLayerStride + fbIndex * 0x10);
int baseLayer = ReadRegister(NvGpuEngine3dReg.FrameBufferNBaseLayer + fbIndex * 0x10);
int blockDim = ReadRegister(NvGpuEngine3dReg.FrameBufferNBlockDim + fbIndex * 0x10);
int gobBlockHeight = 1 << ((blockDim >> 4) & 7);
GalMemoryLayout layout = (GalMemoryLayout)((blockDim >> 12) & 1);
float tx = ReadRegisterFloat(NvGpuEngine3dReg.ViewportNTranslateX + fbIndex * 8);
float ty = ReadRegisterFloat(NvGpuEngine3dReg.ViewportNTranslateY + fbIndex * 8);
float sx = ReadRegisterFloat(NvGpuEngine3dReg.ViewportNScaleX + fbIndex * 8);
float sy = ReadRegisterFloat(NvGpuEngine3dReg.ViewportNScaleY + fbIndex * 8);
_viewportX0 = (int)MathF.Max(0, tx - MathF.Abs(sx));
_viewportY0 = (int)MathF.Max(0, ty - MathF.Abs(sy));
_viewportX1 = (int)(tx + MathF.Abs(sx));
_viewportY1 = (int)(ty + MathF.Abs(sy));
GalImageFormat format = ImageUtils.ConvertSurface((GalSurfaceFormat)surfFormat);
GalImage image = new GalImage(width, height, 1, 1, 1, gobBlockHeight, 1, layout, format, GalTextureTarget.TwoD);
_gpu.ResourceManager.SendColorBuffer(vmm, key, fbIndex, image);
_gpu.Renderer.RenderTarget.SetViewport(fbIndex, _viewportX0, _viewportY0, _viewportX1 - _viewportX0, _viewportY1 - _viewportY0);
}
private void SetFrameBuffer(GalPipelineState state)
{
state.FramebufferSrgb = ReadRegisterBool(NvGpuEngine3dReg.FrameBufferSrgb);
state.FlipX = GetFlipSign(NvGpuEngine3dReg.ViewportNScaleX);
state.FlipY = GetFlipSign(NvGpuEngine3dReg.ViewportNScaleY);
int screenYControl = ReadRegister(NvGpuEngine3dReg.ScreenYControl);
bool negateY = (screenYControl & 1) != 0;
if (negateY)
{
state.FlipY = -state.FlipY;
}
}
private void SetZeta(NvGpuVmm vmm)
{
long va = MakeInt64From2xInt32(NvGpuEngine3dReg.ZetaAddress);
int zetaFormat = ReadRegister(NvGpuEngine3dReg.ZetaFormat);
int blockDim = ReadRegister(NvGpuEngine3dReg.ZetaBlockDimensions);
int gobBlockHeight = 1 << ((blockDim >> 4) & 7);
GalMemoryLayout layout = (GalMemoryLayout)((blockDim >> 12) & 1); //?
bool zetaEnable = ReadRegisterBool(NvGpuEngine3dReg.ZetaEnable);
if (va == 0 || zetaFormat == 0 || !zetaEnable)
{
_gpu.Renderer.RenderTarget.UnbindZeta();
return;
}
long key = vmm.GetPhysicalAddress(va);
int width = ReadRegister(NvGpuEngine3dReg.ZetaHoriz);
int height = ReadRegister(NvGpuEngine3dReg.ZetaVert);
GalImageFormat format = ImageUtils.ConvertZeta((GalZetaFormat)zetaFormat);
// TODO: Support non 2D?
GalImage image = new GalImage(width, height, 1, 1, 1, gobBlockHeight, 1, layout, format, GalTextureTarget.TwoD);
_gpu.ResourceManager.SendZetaBuffer(vmm, key, image);
}
private long[] UploadShaders(NvGpuVmm vmm)
{
long[] keys = new long[5];
long basePosition = MakeInt64From2xInt32(NvGpuEngine3dReg.ShaderAddress);
int index = 1;
int vpAControl = ReadRegister(NvGpuEngine3dReg.ShaderNControl);
bool vpAEnable = (vpAControl & 1) != 0;
if (vpAEnable)
{
//Note: The maxwell supports 2 vertex programs, usually
//only VP B is used, but in some cases VP A is also used.
//In this case, it seems to function as an extra vertex
//shader stage.
//The graphics abstraction layer has a special overload for this
//case, which should merge the two shaders into one vertex shader.
int vpAOffset = ReadRegister(NvGpuEngine3dReg.ShaderNOffset);
int vpBOffset = ReadRegister(NvGpuEngine3dReg.ShaderNOffset + 0x10);
long vpAPos = basePosition + (uint)vpAOffset;
long vpBPos = basePosition + (uint)vpBOffset;
keys[(int)GalShaderType.Vertex] = vpBPos;
_gpu.Renderer.Shader.Create(vmm, vpAPos, vpBPos, GalShaderType.Vertex);
_gpu.Renderer.Shader.Bind(vpBPos);
index = 2;
}
for (; index < 6; index++)
{
GalShaderType type = GetTypeFromProgram(index);
int control = ReadRegister(NvGpuEngine3dReg.ShaderNControl + index * 0x10);
int offset = ReadRegister(NvGpuEngine3dReg.ShaderNOffset + index * 0x10);
//Note: Vertex Program (B) is always enabled.
bool enable = (control & 1) != 0 || index == 1;
if (!enable)
{
_gpu.Renderer.Shader.Unbind(type);
continue;
}
long key = basePosition + (uint)offset;
keys[(int)type] = key;
_gpu.Renderer.Shader.Create(vmm, key, type);
_gpu.Renderer.Shader.Bind(key);
}
return keys;
}
private static GalShaderType GetTypeFromProgram(int program)
{
switch (program)
{
case 0:
case 1: return GalShaderType.Vertex;
case 2: return GalShaderType.TessControl;
case 3: return GalShaderType.TessEvaluation;
case 4: return GalShaderType.Geometry;
case 5: return GalShaderType.Fragment;
}
throw new ArgumentOutOfRangeException(nameof(program));
}
private void SetFrontFace(GalPipelineState state)
{
float signX = GetFlipSign(NvGpuEngine3dReg.ViewportNScaleX);
float signY = GetFlipSign(NvGpuEngine3dReg.ViewportNScaleY);
GalFrontFace frontFace = (GalFrontFace)ReadRegister(NvGpuEngine3dReg.FrontFace);
//Flipping breaks facing. Flipping front facing too fixes it
if (signX != signY)
{
switch (frontFace)
{
case GalFrontFace.Cw: frontFace = GalFrontFace.Ccw; break;
case GalFrontFace.Ccw: frontFace = GalFrontFace.Cw; break;
}
}
state.FrontFace = frontFace;
}
private void SetCullFace(GalPipelineState state)
{
state.CullFaceEnabled = ReadRegisterBool(NvGpuEngine3dReg.CullFaceEnable);
if (state.CullFaceEnabled)
{
state.CullFace = (GalCullFace)ReadRegister(NvGpuEngine3dReg.CullFace);
}
}
private void SetDepth(GalPipelineState state)
{
state.DepthTestEnabled = ReadRegisterBool(NvGpuEngine3dReg.DepthTestEnable);
state.DepthWriteEnabled = ReadRegisterBool(NvGpuEngine3dReg.DepthWriteEnable);
if (state.DepthTestEnabled)
{
state.DepthFunc = (GalComparisonOp)ReadRegister(NvGpuEngine3dReg.DepthTestFunction);
}
state.DepthRangeNear = ReadRegisterFloat(NvGpuEngine3dReg.DepthRangeNNear);
state.DepthRangeFar = ReadRegisterFloat(NvGpuEngine3dReg.DepthRangeNFar);
}
private void SetStencil(GalPipelineState state)
{
state.StencilTestEnabled = ReadRegisterBool(NvGpuEngine3dReg.StencilEnable);
if (state.StencilTestEnabled)
{
state.StencilBackFuncFunc = (GalComparisonOp)ReadRegister(NvGpuEngine3dReg.StencilBackFuncFunc);
state.StencilBackFuncRef = ReadRegister(NvGpuEngine3dReg.StencilBackFuncRef);
state.StencilBackFuncMask = (uint)ReadRegister(NvGpuEngine3dReg.StencilBackFuncMask);
state.StencilBackOpFail = (GalStencilOp)ReadRegister(NvGpuEngine3dReg.StencilBackOpFail);
state.StencilBackOpZFail = (GalStencilOp)ReadRegister(NvGpuEngine3dReg.StencilBackOpZFail);
state.StencilBackOpZPass = (GalStencilOp)ReadRegister(NvGpuEngine3dReg.StencilBackOpZPass);
state.StencilBackMask = (uint)ReadRegister(NvGpuEngine3dReg.StencilBackMask);
state.StencilFrontFuncFunc = (GalComparisonOp)ReadRegister(NvGpuEngine3dReg.StencilFrontFuncFunc);
state.StencilFrontFuncRef = ReadRegister(NvGpuEngine3dReg.StencilFrontFuncRef);
state.StencilFrontFuncMask = (uint)ReadRegister(NvGpuEngine3dReg.StencilFrontFuncMask);
state.StencilFrontOpFail = (GalStencilOp)ReadRegister(NvGpuEngine3dReg.StencilFrontOpFail);
state.StencilFrontOpZFail = (GalStencilOp)ReadRegister(NvGpuEngine3dReg.StencilFrontOpZFail);
state.StencilFrontOpZPass = (GalStencilOp)ReadRegister(NvGpuEngine3dReg.StencilFrontOpZPass);
state.StencilFrontMask = (uint)ReadRegister(NvGpuEngine3dReg.StencilFrontMask);
}
}
private void SetScissor(GalPipelineState state)
{
int count = 0;
for (int index = 0; index < GalPipelineState.RenderTargetsCount; index++)
{
state.ScissorTestEnabled[index] = ReadRegisterBool(NvGpuEngine3dReg.ScissorEnable + index * 4);
if (state.ScissorTestEnabled[index])
{
uint scissorHorizontal = (uint)ReadRegister(NvGpuEngine3dReg.ScissorHorizontal + index * 4);
uint scissorVertical = (uint)ReadRegister(NvGpuEngine3dReg.ScissorVertical + index * 4);
int left = (int)(scissorHorizontal & 0xFFFF); // Left, lower 16 bits
int right = (int)(scissorHorizontal >> 16); // Right, upper 16 bits
int bottom = (int)(scissorVertical & 0xFFFF); // Bottom, lower 16 bits
int top = (int)(scissorVertical >> 16); // Top, upper 16 bits
int width = Math.Abs(right - left);
int height = Math.Abs(top - bottom);
// If the scissor test covers the whole possible viewport, i.e. uninitialized, disable scissor test
if ((width > NvGpu.MaxViewportSize && height > NvGpu.MaxViewportSize) || width <= 0 || height <= 0)
{
state.ScissorTestEnabled[index] = false;
continue;
}
// Keep track of how many scissor tests are active.
// If only 1, and it's the first user should apply to all viewports
count++;
// Flip X
if (state.FlipX == -1)
{
left = _viewportX1 - (left - _viewportX0);
right = _viewportX1 - (right - _viewportX0);
}
// Ensure X is in the right order
if (left > right)
{
int temp = left;
left = right;
right = temp;
}
// Flip Y
if (state.FlipY == -1)
{
bottom = _viewportY1 - (bottom - _viewportY0);
top = _viewportY1 - (top - _viewportY0);
}
// Ensure Y is in the right order
if (bottom > top)
{
int temp = top;
top = bottom;
bottom = temp;
}
// Handle out of active viewport dimensions
left = Math.Clamp(left, _viewportX0, _viewportX1);
right = Math.Clamp(right, _viewportX0, _viewportX1);
top = Math.Clamp(top, _viewportY0, _viewportY1);
bottom = Math.Clamp(bottom, _viewportY0, _viewportY1);
// Save values to state
state.ScissorTestX[index] = left;
state.ScissorTestY[index] = bottom;
state.ScissorTestWidth[index] = right - left;
state.ScissorTestHeight[index] = top - bottom;
}
}
state.ScissorTestCount = count;
}
private void SetBlending(GalPipelineState state)
{
bool blendIndependent = ReadRegisterBool(NvGpuEngine3dReg.BlendIndependent);
state.BlendIndependent = blendIndependent;
for (int index = 0; index < GalPipelineState.RenderTargetsCount; index++)
{
if (blendIndependent)
{
state.Blends[index].Enabled = ReadRegisterBool(NvGpuEngine3dReg.IBlendNEnable + index);
if (state.Blends[index].Enabled)
{
state.Blends[index].SeparateAlpha = ReadRegisterBool(NvGpuEngine3dReg.IBlendNSeparateAlpha + index * 8);
state.Blends[index].EquationRgb = ReadBlendEquation(NvGpuEngine3dReg.IBlendNEquationRgb + index * 8);
state.Blends[index].FuncSrcRgb = ReadBlendFactor (NvGpuEngine3dReg.IBlendNFuncSrcRgb + index * 8);
state.Blends[index].FuncDstRgb = ReadBlendFactor (NvGpuEngine3dReg.IBlendNFuncDstRgb + index * 8);
state.Blends[index].EquationAlpha = ReadBlendEquation(NvGpuEngine3dReg.IBlendNEquationAlpha + index * 8);
state.Blends[index].FuncSrcAlpha = ReadBlendFactor (NvGpuEngine3dReg.IBlendNFuncSrcAlpha + index * 8);
state.Blends[index].FuncDstAlpha = ReadBlendFactor (NvGpuEngine3dReg.IBlendNFuncDstAlpha + index * 8);
}
}
else
{
//It seems that even when independent blend is disabled, the first IBlend enable
//register is still set to indicate whenever blend is enabled or not (?).
state.Blends[index].Enabled = ReadRegisterBool(NvGpuEngine3dReg.IBlendNEnable);
if (state.Blends[index].Enabled)
{
state.Blends[index].SeparateAlpha = ReadRegisterBool(NvGpuEngine3dReg.BlendSeparateAlpha);
state.Blends[index].EquationRgb = ReadBlendEquation(NvGpuEngine3dReg.BlendEquationRgb);
state.Blends[index].FuncSrcRgb = ReadBlendFactor (NvGpuEngine3dReg.BlendFuncSrcRgb);
state.Blends[index].FuncDstRgb = ReadBlendFactor (NvGpuEngine3dReg.BlendFuncDstRgb);
state.Blends[index].EquationAlpha = ReadBlendEquation(NvGpuEngine3dReg.BlendEquationAlpha);
state.Blends[index].FuncSrcAlpha = ReadBlendFactor (NvGpuEngine3dReg.BlendFuncSrcAlpha);
state.Blends[index].FuncDstAlpha = ReadBlendFactor (NvGpuEngine3dReg.BlendFuncDstAlpha);
}
}
}
}
private GalBlendEquation ReadBlendEquation(NvGpuEngine3dReg register)
{
return (GalBlendEquation)ReadRegister(register);
}
private GalBlendFactor ReadBlendFactor(NvGpuEngine3dReg register)
{
return (GalBlendFactor)ReadRegister(register);
}
private void SetColorMask(GalPipelineState state)
{
bool colorMaskCommon = ReadRegisterBool(NvGpuEngine3dReg.ColorMaskCommon);
state.ColorMaskCommon = colorMaskCommon;
for (int index = 0; index < GalPipelineState.RenderTargetsCount; index++)
{
int colorMask = ReadRegister(NvGpuEngine3dReg.ColorMaskN + (colorMaskCommon ? 0 : index));
state.ColorMasks[index].Red = ((colorMask >> 0) & 0xf) != 0;
state.ColorMasks[index].Green = ((colorMask >> 4) & 0xf) != 0;
state.ColorMasks[index].Blue = ((colorMask >> 8) & 0xf) != 0;
state.ColorMasks[index].Alpha = ((colorMask >> 12) & 0xf) != 0;
}
}
private void SetPrimitiveRestart(GalPipelineState state)
{
state.PrimitiveRestartEnabled = ReadRegisterBool(NvGpuEngine3dReg.PrimRestartEnable);
if (state.PrimitiveRestartEnabled)
{
state.PrimitiveRestartIndex = (uint)ReadRegister(NvGpuEngine3dReg.PrimRestartIndex);
}
}
private void SetRenderTargets()
{
//Commercial games do not seem to
//bool SeparateFragData = ReadRegisterBool(NvGpuEngine3dReg.RTSeparateFragData);
uint control = (uint)(ReadRegister(NvGpuEngine3dReg.RtControl));
uint count = control & 0xf;
if (count > 0)
{
int[] map = new int[count];
for (int index = 0; index < count; index++)
{
int shift = 4 + index * 3;
map[index] = (int)((control >> shift) & 7);
}
_gpu.Renderer.RenderTarget.SetMap(map);
}
else
{
_gpu.Renderer.RenderTarget.SetMap(null);
}
}
private void UploadTextures(NvGpuVmm vmm, GalPipelineState state, long[] keys)
{
long baseShPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.ShaderAddress);
int textureCbIndex = ReadRegister(NvGpuEngine3dReg.TextureCbIndex);
List<(long, GalImage, GalTextureSampler)> unboundTextures = new List<(long, GalImage, GalTextureSampler)>();
for (int index = 0; index < keys.Length; index++)
{
foreach (TextureDescriptor desc in _gpu.Renderer.Shader.GetTextureUsage(keys[index]))
{
int textureHandle;
if (desc.IsBindless)
{
long position = _constBuffers[index][desc.CbufSlot].Position;
textureHandle = vmm.ReadInt32(position + desc.CbufOffset * 4);
}
else
{
long position = _constBuffers[index][textureCbIndex].Position;
textureHandle = vmm.ReadInt32(position + desc.HandleIndex * 4);
}
unboundTextures.Add(UploadTexture(vmm, textureHandle));
}
}
for (int index = 0; index < unboundTextures.Count; index++)
{
(long key, GalImage image, GalTextureSampler sampler) = unboundTextures[index];
if (key == 0)
{
continue;
}
_gpu.Renderer.Texture.Bind(key, index, image);
_gpu.Renderer.Texture.SetSampler(image, sampler);
}
}
private (long, GalImage, GalTextureSampler) UploadTexture(NvGpuVmm vmm, int textureHandle)
{
if (textureHandle == 0)
{
//FIXME: Some games like puyo puyo will use handles with the value 0.
//This is a bug, most likely caused by sync issues.
return (0, default(GalImage), default(GalTextureSampler));
}
bool linkedTsc = ReadRegisterBool(NvGpuEngine3dReg.LinkedTsc);
int ticIndex = (textureHandle >> 0) & 0xfffff;
int tscIndex = linkedTsc ? ticIndex : (textureHandle >> 20) & 0xfff;
long ticPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.TexHeaderPoolOffset);
long tscPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.TexSamplerPoolOffset);
ticPosition += ticIndex * 0x20;
tscPosition += tscIndex * 0x20;
GalImage image = TextureFactory.MakeTexture(vmm, ticPosition);
GalTextureSampler sampler = TextureFactory.MakeSampler(_gpu, vmm, tscPosition);
long key = vmm.ReadInt64(ticPosition + 4) & 0xffffffffffff;
if (image.Layout == GalMemoryLayout.BlockLinear)
{
key &= ~0x1ffL;
}
else if (image.Layout == GalMemoryLayout.Pitch)
{
key &= ~0x1fL;
}
key = vmm.GetPhysicalAddress(key);
if (key == -1)
{
//FIXME: Shouldn't ignore invalid addresses.
return (0, default(GalImage), default(GalTextureSampler));
}
_gpu.ResourceManager.SendTexture(vmm, key, image);
return (key, image, sampler);
}
private void UploadConstBuffers(NvGpuVmm vmm, GalPipelineState state, long[] keys)
{
for (int stage = 0; stage < keys.Length; stage++)
{
foreach (CBufferDescriptor desc in _gpu.Renderer.Shader.GetConstBufferUsage(keys[stage]))
{
ConstBuffer cb = _constBuffers[stage][desc.Slot];
if (!cb.Enabled)
{
continue;
}
long key = vmm.GetPhysicalAddress(cb.Position);
if (_gpu.ResourceManager.MemoryRegionModified(vmm, key, cb.Size, NvGpuBufferType.ConstBuffer))
{
if (vmm.TryGetHostAddress(cb.Position, cb.Size, out IntPtr cbPtr))
{
_gpu.Renderer.Buffer.SetData(key, cb.Size, cbPtr);
}
else
{
_gpu.Renderer.Buffer.SetData(key, vmm.ReadBytes(cb.Position, cb.Size));
}
}
state.ConstBufferKeys[stage][desc.Slot] = key;
}
}
}
private void UploadVertexArrays(NvGpuVmm vmm, GalPipelineState state)
{
long ibPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.IndexArrayAddress);
long iboKey = vmm.GetPhysicalAddress(ibPosition);
int indexEntryFmt = ReadRegister(NvGpuEngine3dReg.IndexArrayFormat);
int indexCount = ReadRegister(NvGpuEngine3dReg.IndexBatchCount);
int primCtrl = ReadRegister(NvGpuEngine3dReg.VertexBeginGl);
GalPrimitiveType primType = (GalPrimitiveType)(primCtrl & 0xffff);
GalIndexFormat indexFormat = (GalIndexFormat)indexEntryFmt;
int indexEntrySize = 1 << indexEntryFmt;
if (indexEntrySize > 4)
{
throw new InvalidOperationException("Invalid index entry size \"" + indexEntrySize + "\"!");
}
if (indexCount != 0)
{
int ibSize = indexCount * indexEntrySize;
bool iboCached = _gpu.Renderer.Rasterizer.IsIboCached(iboKey, (uint)ibSize);
bool usesLegacyQuads =
primType == GalPrimitiveType.Quads ||
primType == GalPrimitiveType.QuadStrip;
if (!iboCached || _gpu.ResourceManager.MemoryRegionModified(vmm, iboKey, (uint)ibSize, NvGpuBufferType.Index))
{
if (!usesLegacyQuads)
{
if (vmm.TryGetHostAddress(ibPosition, ibSize, out IntPtr ibPtr))
{
_gpu.Renderer.Rasterizer.CreateIbo(iboKey, ibSize, ibPtr);
}
else
{
_gpu.Renderer.Rasterizer.CreateIbo(iboKey, ibSize, vmm.ReadBytes(ibPosition, ibSize));
}
}
else
{
byte[] buffer = vmm.ReadBytes(ibPosition, ibSize);
if (primType == GalPrimitiveType.Quads)
{
buffer = QuadHelper.ConvertQuadsToTris(buffer, indexEntrySize, indexCount);
}
else /* if (PrimType == GalPrimitiveType.QuadStrip) */
{
buffer = QuadHelper.ConvertQuadStripToTris(buffer, indexEntrySize, indexCount);
}
_gpu.Renderer.Rasterizer.CreateIbo(iboKey, ibSize, buffer);
}
}
if (!usesLegacyQuads)
{
_gpu.Renderer.Rasterizer.SetIndexArray(ibSize, indexFormat);
}
else
{
if (primType == GalPrimitiveType.Quads)
{
_gpu.Renderer.Rasterizer.SetIndexArray(QuadHelper.ConvertSizeQuadsToTris(ibSize), indexFormat);
}
else /* if (PrimType == GalPrimitiveType.QuadStrip) */
{
_gpu.Renderer.Rasterizer.SetIndexArray(QuadHelper.ConvertSizeQuadStripToTris(ibSize), indexFormat);
}
}
}
List<GalVertexAttrib>[] attribs = new List<GalVertexAttrib>[32];
for (int attr = 0; attr < 16; attr++)
{
int packed = ReadRegister(NvGpuEngine3dReg.VertexAttribNFormat + attr);
int arrayIndex = packed & 0x1f;
if (attribs[arrayIndex] == null)
{
attribs[arrayIndex] = new List<GalVertexAttrib>();
}
long vbPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.VertexArrayNAddress + arrayIndex * 4);
if (vbPosition == 0)
{
continue;
}
bool isConst = ((packed >> 6) & 1) != 0;
int offset = (packed >> 7) & 0x3fff;
GalVertexAttribSize size = (GalVertexAttribSize)((packed >> 21) & 0x3f);
GalVertexAttribType type = (GalVertexAttribType)((packed >> 27) & 0x7);
bool isRgba = ((packed >> 31) & 1) != 0;
// Check vertex array is enabled to avoid out of bounds exception when reading bytes
bool enable = (ReadRegister(NvGpuEngine3dReg.VertexArrayNControl + arrayIndex * 4) & 0x1000) != 0;
//Note: 16 is the maximum size of an attribute,
//having a component size of 32-bits with 4 elements (a vec4).
if (enable)
{
byte[] data = vmm.ReadBytes(vbPosition + offset, 16);
attribs[arrayIndex].Add(new GalVertexAttrib(attr, isConst, offset, data, size, type, isRgba));
}
}
state.VertexBindings = new GalVertexBinding[32];
for (int index = 0; index < 32; index++)
{
if (attribs[index] == null)
{
continue;
}
int control = ReadRegister(NvGpuEngine3dReg.VertexArrayNControl + index * 4);
bool enable = (control & 0x1000) != 0;
if (!enable)
{
continue;
}
long vbPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.VertexArrayNAddress + index * 4);
long vbEndPos = MakeInt64From2xInt32(NvGpuEngine3dReg.VertexArrayNEndAddr + index * 2);
int vertexDivisor = ReadRegister(NvGpuEngine3dReg.VertexArrayNDivisor + index * 4);
bool instanced = ReadRegisterBool(NvGpuEngine3dReg.VertexArrayNInstance + index);
int stride = control & 0xfff;
if (instanced && vertexDivisor != 0)
{
vbPosition += stride * (_currentInstance / vertexDivisor);
}
if (vbPosition > vbEndPos)
{
//Instance is invalid, ignore the draw call
continue;
}
long vboKey = vmm.GetPhysicalAddress(vbPosition);
long vbSize = (vbEndPos - vbPosition) + 1;
int modifiedVbSize = (int)vbSize;
// If quads convert size to triangle length
if (stride == 0)
{
if (primType == GalPrimitiveType.Quads)
{
modifiedVbSize = QuadHelper.ConvertSizeQuadsToTris(modifiedVbSize);
}
else if (primType == GalPrimitiveType.QuadStrip)
{
modifiedVbSize = QuadHelper.ConvertSizeQuadStripToTris(modifiedVbSize);
}
}
bool vboCached = _gpu.Renderer.Rasterizer.IsVboCached(vboKey, modifiedVbSize);
if (!vboCached || _gpu.ResourceManager.MemoryRegionModified(vmm, vboKey, vbSize, NvGpuBufferType.Vertex))
{
if ((primType == GalPrimitiveType.Quads | primType == GalPrimitiveType.QuadStrip) && stride != 0)
{
// Convert quad buffer to triangles
byte[] data = vmm.ReadBytes(vbPosition, vbSize);
if (primType == GalPrimitiveType.Quads)
{
data = QuadHelper.ConvertQuadsToTris(data, stride, (int)(vbSize / stride));
}
else
{
data = QuadHelper.ConvertQuadStripToTris(data, stride, (int)(vbSize / stride));
}
_gpu.Renderer.Rasterizer.CreateVbo(vboKey, data);
}
else if (vmm.TryGetHostAddress(vbPosition, vbSize, out IntPtr vbPtr))
{
_gpu.Renderer.Rasterizer.CreateVbo(vboKey, (int)vbSize, vbPtr);
}
else
{
_gpu.Renderer.Rasterizer.CreateVbo(vboKey, vmm.ReadBytes(vbPosition, vbSize));
}
}
state.VertexBindings[index].Enabled = true;
state.VertexBindings[index].Stride = stride;
state.VertexBindings[index].VboKey = vboKey;
state.VertexBindings[index].Instanced = instanced;
state.VertexBindings[index].Divisor = vertexDivisor;
state.VertexBindings[index].Attribs = attribs[index].ToArray();
}
}
private void DispatchRender(NvGpuVmm vmm, GalPipelineState state)
{
int indexCount = ReadRegister(NvGpuEngine3dReg.IndexBatchCount);
int primCtrl = ReadRegister(NvGpuEngine3dReg.VertexBeginGl);
GalPrimitiveType primType = (GalPrimitiveType)(primCtrl & 0xffff);
bool instanceNext = ((primCtrl >> 26) & 1) != 0;
bool instanceCont = ((primCtrl >> 27) & 1) != 0;
if (instanceNext && instanceCont)
{
throw new InvalidOperationException("GPU tried to increase and reset instance count at the same time");
}
if (instanceNext)
{
_currentInstance++;
}
else if (!instanceCont)
{
_currentInstance = 0;
}
state.Instance = _currentInstance;
_gpu.Renderer.Pipeline.Bind(state);
_gpu.Renderer.RenderTarget.Bind();
if (indexCount != 0)
{
int indexEntryFmt = ReadRegister(NvGpuEngine3dReg.IndexArrayFormat);
int indexFirst = ReadRegister(NvGpuEngine3dReg.IndexBatchFirst);
int vertexBase = ReadRegister(NvGpuEngine3dReg.VertexArrayElemBase);
long indexPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.IndexArrayAddress);
long iboKey = vmm.GetPhysicalAddress(indexPosition);
//Quad primitive types were deprecated on OpenGL 3.x,
//they are converted to a triangles index buffer on IB creation,
//so we should use the triangles type here too.
if (primType == GalPrimitiveType.Quads || primType == GalPrimitiveType.QuadStrip)
{
//Note: We assume that index first points to the first
//vertex of a quad, if it points to the middle of a
//quad (First % 4 != 0 for Quads) then it will not work properly.
if (primType == GalPrimitiveType.Quads)
{
indexFirst = QuadHelper.ConvertSizeQuadsToTris(indexFirst);
}
else // QuadStrip
{
indexFirst = QuadHelper.ConvertSizeQuadStripToTris(indexFirst);
}
primType = GalPrimitiveType.Triangles;
}
_gpu.Renderer.Rasterizer.DrawElements(iboKey, indexFirst, vertexBase, primType);
}
else
{
int vertexFirst = ReadRegister(NvGpuEngine3dReg.VertexArrayFirst);
int vertexCount = ReadRegister(NvGpuEngine3dReg.VertexArrayCount);
//Quad primitive types were deprecated on OpenGL 3.x,
//they are converted to a triangles index buffer on IB creation,
//so we should use the triangles type here too.
if (primType == GalPrimitiveType.Quads || primType == GalPrimitiveType.QuadStrip)
{
//Note: We assume that index first points to the first
//vertex of a quad, if it points to the middle of a
//quad (First % 4 != 0 for Quads) then it will not work properly.
if (primType == GalPrimitiveType.Quads)
{
vertexFirst = QuadHelper.ConvertSizeQuadsToTris(vertexFirst);
}
else // QuadStrip
{
vertexFirst = QuadHelper.ConvertSizeQuadStripToTris(vertexFirst);
}
primType = GalPrimitiveType.Triangles;
vertexCount = QuadHelper.ConvertSizeQuadsToTris(vertexCount);
}
_gpu.Renderer.Rasterizer.DrawArrays(vertexFirst, vertexCount, primType);
}
// Reset pipeline for host OpenGL calls
_gpu.Renderer.Pipeline.Unbind(state);
//Is the GPU really clearing those registers after draw?
WriteRegister(NvGpuEngine3dReg.IndexBatchFirst, 0);
WriteRegister(NvGpuEngine3dReg.IndexBatchCount, 0);
}
private enum QueryMode
{
WriteSeq,
Sync,
WriteCounterAndTimestamp
}
private void QueryControl(NvGpuVmm vmm, GpuMethodCall methCall)
{
WriteRegister(methCall);
long position = MakeInt64From2xInt32(NvGpuEngine3dReg.QueryAddress);
int seq = Registers[(int)NvGpuEngine3dReg.QuerySequence];
int ctrl = Registers[(int)NvGpuEngine3dReg.QueryControl];
QueryMode mode = (QueryMode)(ctrl & 3);
switch (mode)
{
case QueryMode.WriteSeq: vmm.WriteInt32(position, seq); break;
case QueryMode.WriteCounterAndTimestamp:
{
//TODO: Implement counters.
long counter = 1;
long timestamp = PerformanceCounter.ElapsedMilliseconds;
vmm.WriteInt64(position + 0, counter);
vmm.WriteInt64(position + 8, timestamp);
break;
}
}
}
private void CbData(NvGpuVmm vmm, GpuMethodCall methCall)
{
long position = MakeInt64From2xInt32(NvGpuEngine3dReg.ConstBufferAddress);
int offset = ReadRegister(NvGpuEngine3dReg.ConstBufferOffset);
vmm.WriteInt32(position + offset, methCall.Argument);
WriteRegister(NvGpuEngine3dReg.ConstBufferOffset, offset + 4);
_gpu.ResourceManager.ClearPbCache(NvGpuBufferType.ConstBuffer);
}
private void CbBind(NvGpuVmm vmm, GpuMethodCall methCall)
{
int stage = (methCall.Method - 0x904) >> 3;
int index = methCall.Argument;
bool enabled = (index & 1) != 0;
index = (index >> 4) & 0x1f;
long position = MakeInt64From2xInt32(NvGpuEngine3dReg.ConstBufferAddress);
long cbKey = vmm.GetPhysicalAddress(position);
int size = ReadRegister(NvGpuEngine3dReg.ConstBufferSize);
if (!_gpu.Renderer.Buffer.IsCached(cbKey, size))
{
_gpu.Renderer.Buffer.Create(cbKey, size);
}
ConstBuffer cb = _constBuffers[stage][index];
if (cb.Position != position || cb.Enabled != enabled || cb.Size != size)
{
_constBuffers[stage][index].Position = position;
_constBuffers[stage][index].Enabled = enabled;
_constBuffers[stage][index].Size = size;
}
}
private float GetFlipSign(NvGpuEngine3dReg reg)
{
return MathF.Sign(ReadRegisterFloat(reg));
}
private long MakeInt64From2xInt32(NvGpuEngine3dReg reg)
{
return
(long)Registers[(int)reg + 0] << 32 |
(uint)Registers[(int)reg + 1];
}
private void WriteRegister(GpuMethodCall methCall)
{
Registers[methCall.Method] = methCall.Argument;
}
private int ReadRegister(NvGpuEngine3dReg reg)
{
return Registers[(int)reg];
}
private float ReadRegisterFloat(NvGpuEngine3dReg reg)
{
return BitConverter.Int32BitsToSingle(ReadRegister(reg));
}
private bool ReadRegisterBool(NvGpuEngine3dReg reg)
{
return (ReadRegister(reg) & 1) != 0;
}
private void WriteRegister(NvGpuEngine3dReg reg, int value)
{
Registers[(int)reg] = value;
}
}
}