Ryujinx/Ryujinx.Graphics.Shader/Translation/Translator.cs

273 lines
No EOL
9.3 KiB
C#

using Ryujinx.Graphics.Shader.CodeGen.Glsl;
using Ryujinx.Graphics.Shader.Decoders;
using Ryujinx.Graphics.Shader.IntermediateRepresentation;
using Ryujinx.Graphics.Shader.StructuredIr;
using Ryujinx.Graphics.Shader.Translation.Optimizations;
using System;
using System.Collections.Generic;
using static Ryujinx.Graphics.Shader.IntermediateRepresentation.OperandHelper;
namespace Ryujinx.Graphics.Shader.Translation
{
public static class Translator
{
private const int HeaderSize = 0x50;
public static ShaderProgram Translate(ulong address, IGpuAccessor gpuAccessor, TranslationFlags flags)
{
return Translate(DecodeShader(address, gpuAccessor, flags, out ShaderConfig config), config);
}
public static ShaderProgram Translate(ulong addressA, ulong addressB, IGpuAccessor gpuAccessor, TranslationFlags flags)
{
Operation[] opsA = DecodeShader(addressA, gpuAccessor, flags | TranslationFlags.VertexA, out ShaderConfig configA);
Operation[] opsB = DecodeShader(addressB, gpuAccessor, flags, out ShaderConfig config);
config.SetUsedFeature(configA.UsedFeatures);
return Translate(Combine(opsA, opsB), config, configA.Size);
}
private static ShaderProgram Translate(Operation[] ops, ShaderConfig config, int sizeA = 0)
{
BasicBlock[] blocks = ControlFlowGraph.MakeCfg(ops);
if (blocks.Length > 0)
{
Dominance.FindDominators(blocks[0], blocks.Length);
Dominance.FindDominanceFrontiers(blocks);
Ssa.Rename(blocks);
Optimizer.RunPass(blocks, config);
Lowering.RunPass(blocks, config);
}
StructuredProgramInfo sInfo = StructuredProgram.MakeStructuredProgram(blocks, config);
GlslProgram program = GlslGenerator.Generate(sInfo, config);
ShaderProgramInfo spInfo = new ShaderProgramInfo(
program.CBufferDescriptors,
program.SBufferDescriptors,
program.TextureDescriptors,
program.ImageDescriptors,
sInfo.UsesInstanceId);
string glslCode = program.Code;
return new ShaderProgram(spInfo, config.Stage, glslCode, config.Size, sizeA);
}
private static Operation[] DecodeShader(ulong address, IGpuAccessor gpuAccessor, TranslationFlags flags, out ShaderConfig config)
{
Block[] cfg;
if ((flags & TranslationFlags.Compute) != 0)
{
config = new ShaderConfig(gpuAccessor, flags);
cfg = Decoder.Decode(gpuAccessor, address);
}
else
{
config = new ShaderConfig(new ShaderHeader(gpuAccessor, address), gpuAccessor, flags);
cfg = Decoder.Decode(gpuAccessor, address + HeaderSize);
}
if (cfg == null)
{
gpuAccessor.Log("Invalid branch detected, failed to build CFG.");
return Array.Empty<Operation>();
}
EmitterContext context = new EmitterContext(config);
ulong maxEndAddress = 0;
for (int blkIndex = 0; blkIndex < cfg.Length; blkIndex++)
{
Block block = cfg[blkIndex];
if (maxEndAddress < block.EndAddress)
{
maxEndAddress = block.EndAddress;
}
context.CurrBlock = block;
context.MarkLabel(context.GetLabel(block.Address));
for (int opIndex = 0; opIndex < block.OpCodes.Count; opIndex++)
{
OpCode op = block.OpCodes[opIndex];
if ((flags & TranslationFlags.DebugMode) != 0)
{
string instName;
if (op.Emitter != null)
{
instName = op.Emitter.Method.Name;
}
else
{
instName = "???";
gpuAccessor.Log($"Invalid instruction at 0x{op.Address:X6} (0x{op.RawOpCode:X16}).");
}
string dbgComment = $"0x{op.Address:X6}: 0x{op.RawOpCode:X16} {instName}";
context.Add(new CommentNode(dbgComment));
}
if (op.NeverExecute)
{
continue;
}
Operand predSkipLbl = null;
bool skipPredicateCheck = op is OpCodeBranch opBranch && !opBranch.PushTarget;
if (op is OpCodeBranchPop opBranchPop)
{
// If the instruction is a SYNC or BRK instruction with only one
// possible target address, then the instruction is basically
// just a simple branch, we can generate code similar to branch
// instructions, with the condition check on the branch itself.
skipPredicateCheck = opBranchPop.Targets.Count < 2;
}
if (!(op.Predicate.IsPT || skipPredicateCheck))
{
Operand label;
if (opIndex == block.OpCodes.Count - 1 && block.Next != null)
{
label = context.GetLabel(block.Next.Address);
}
else
{
label = Label();
predSkipLbl = label;
}
Operand pred = Register(op.Predicate);
if (op.InvertPredicate)
{
context.BranchIfTrue(label, pred);
}
else
{
context.BranchIfFalse(label, pred);
}
}
context.CurrOp = op;
op.Emitter?.Invoke(context);
if (predSkipLbl != null)
{
context.MarkLabel(predSkipLbl);
}
}
}
config.SizeAdd((int)maxEndAddress + (flags.HasFlag(TranslationFlags.Compute) ? 0 : HeaderSize));
return context.GetOperations();
}
private static Operation[] Combine(Operation[] a, Operation[] b)
{
// Here we combine two shaders.
// For shader A:
// - All user attribute stores on shader A are turned into copies to a
// temporary variable. It's assumed that shader B will consume them.
// - All return instructions are turned into branch instructions, the
// branch target being the start of the shader B code.
// For shader B:
// - All user attribute loads on shader B are turned into copies from a
// temporary variable, as long that attribute is written by shader A.
List<Operation> output = new List<Operation>(a.Length + b.Length);
Operand[] temps = new Operand[AttributeConsts.UserAttributesCount * 4];
Operand lblB = Label();
for (int index = 0; index < a.Length; index++)
{
Operation operation = a[index];
if (IsUserAttribute(operation.Dest))
{
int tIndex = (operation.Dest.Value - AttributeConsts.UserAttributeBase) / 4;
Operand temp = temps[tIndex];
if (temp == null)
{
temp = Local();
temps[tIndex] = temp;
}
operation.Dest = temp;
}
if (operation.Inst == Instruction.Return)
{
output.Add(new Operation(Instruction.Branch, lblB));
}
else
{
output.Add(operation);
}
}
output.Add(new Operation(Instruction.MarkLabel, lblB));
for (int index = 0; index < b.Length; index++)
{
Operation operation = b[index];
for (int srcIndex = 0; srcIndex < operation.SourcesCount; srcIndex++)
{
Operand src = operation.GetSource(srcIndex);
if (IsUserAttribute(src))
{
Operand temp = temps[(src.Value - AttributeConsts.UserAttributeBase) / 4];
if (temp != null)
{
operation.SetSource(srcIndex, temp);
}
}
}
output.Add(operation);
}
return output.ToArray();
}
private static bool IsUserAttribute(Operand operand)
{
return operand != null &&
operand.Type == OperandType.Attribute &&
operand.Value >= AttributeConsts.UserAttributeBase &&
operand.Value < AttributeConsts.UserAttributeEnd;
}
}
}