Ryujinx/Ryujinx.Core/Gpu/NvGpuFifo.cs
gdkchan 34037701c7
NvServices refactoring (#120)
* Initial implementation of NvMap/NvHostCtrl

* More work on NvHostCtrl

* Refactoring of nvservices, move GPU Vmm, make Vmm per-process, refactor most gpu devices, move Gpu to Core, fix CbBind

* Implement GetGpuTime, support CancelSynchronization, fix issue on InsertWaitingMutex, proper double buffering support (again, not working properly for commercial games, only hb)

* Try to fix perf regression reading/writing textures, moved syncpts and events to a UserCtx class, delete global state when the process exits, other minor tweaks

* Remove now unused code, add comment about probably wrong result codes
2018-05-07 15:53:23 -03:00

174 lines
4.7 KiB
C#

using System.Collections.Concurrent;
namespace Ryujinx.Core.Gpu
{
public class NvGpuFifo
{
private const int MacrosCount = 0x80;
private const int MacroIndexMask = MacrosCount - 1;
private NvGpu Gpu;
private ConcurrentQueue<(NvGpuVmm, NvGpuPBEntry)> BufferQueue;
private NvGpuEngine[] SubChannels;
private struct CachedMacro
{
public long Position { get; private set; }
private MacroInterpreter Interpreter;
public CachedMacro(NvGpuFifo PFifo, INvGpuEngine Engine, long Position)
{
this.Position = Position;
Interpreter = new MacroInterpreter(PFifo, Engine);
}
public void PushParam(int Param)
{
Interpreter?.Fifo.Enqueue(Param);
}
public void Execute(NvGpuVmm Vmm, int Param)
{
Interpreter?.Execute(Vmm, Position, Param);
}
}
private long CurrMacroPosition;
private int CurrMacroBindIndex;
private CachedMacro[] Macros;
public NvGpuFifo(NvGpu Gpu)
{
this.Gpu = Gpu;
BufferQueue = new ConcurrentQueue<(NvGpuVmm, NvGpuPBEntry)>();
SubChannels = new NvGpuEngine[8];
Macros = new CachedMacro[MacrosCount];
}
public void PushBuffer(NvGpuVmm Vmm, NvGpuPBEntry[] Buffer)
{
foreach (NvGpuPBEntry PBEntry in Buffer)
{
BufferQueue.Enqueue((Vmm, PBEntry));
}
}
public void DispatchCalls()
{
while (Step());
}
public bool Step()
{
if (BufferQueue.TryDequeue(out (NvGpuVmm Vmm, NvGpuPBEntry PBEntry) Tuple))
{
CallMethod(Tuple.Vmm, Tuple.PBEntry);
return true;
}
return false;
}
private void CallMethod(NvGpuVmm Vmm, NvGpuPBEntry PBEntry)
{
if (PBEntry.Method < 0x80)
{
switch ((NvGpuFifoMeth)PBEntry.Method)
{
case NvGpuFifoMeth.BindChannel:
{
NvGpuEngine Engine = (NvGpuEngine)PBEntry.Arguments[0];
SubChannels[PBEntry.SubChannel] = Engine;
break;
}
case NvGpuFifoMeth.SetMacroUploadAddress:
{
CurrMacroPosition = (long)((ulong)PBEntry.Arguments[0] << 2);
break;
}
case NvGpuFifoMeth.SendMacroCodeData:
{
long Position = CurrMacroPosition;
foreach (int Arg in PBEntry.Arguments)
{
Vmm.WriteInt32(Position, Arg);
CurrMacroPosition += 4;
Position += 4;
}
break;
}
case NvGpuFifoMeth.SetMacroBindingIndex:
{
CurrMacroBindIndex = PBEntry.Arguments[0];
break;
}
case NvGpuFifoMeth.BindMacro:
{
long Position = (long)((ulong)PBEntry.Arguments[0] << 2);
Macros[CurrMacroBindIndex] = new CachedMacro(this, Gpu.Engine3d, Position);
break;
}
}
}
else
{
switch (SubChannels[PBEntry.SubChannel])
{
case NvGpuEngine._2d: Call2dMethod(Vmm, PBEntry); break;
case NvGpuEngine._3d: Call3dMethod(Vmm, PBEntry); break;
}
}
}
private void Call2dMethod(NvGpuVmm Vmm, NvGpuPBEntry PBEntry)
{
Gpu.Engine2d.CallMethod(Vmm, PBEntry);
}
private void Call3dMethod(NvGpuVmm Vmm, NvGpuPBEntry PBEntry)
{
if (PBEntry.Method < 0xe00)
{
Gpu.Engine3d.CallMethod(Vmm, PBEntry);
}
else
{
int MacroIndex = (PBEntry.Method >> 1) & MacroIndexMask;
if ((PBEntry.Method & 1) != 0)
{
foreach (int Arg in PBEntry.Arguments)
{
Macros[MacroIndex].PushParam(Arg);
}
}
else
{
Macros[MacroIndex].Execute(Vmm, PBEntry.Arguments[0]);
}
}
}
}
}