Ryujinx/Ryujinx.Graphics.Shader/Translation/EmitterContext.cs
riperiperi 484eb645ae
Implement Zero-Configuration Resolution Scaling (#1365)
* Initial implementation of Render Target Scaling

Works with most games I have. No GUI option right now, it is hardcoded.

Missing handling for texelFetch operation.

* Realtime Configuration, refactoring.

* texelFetch scaling on fragment shader (WIP)

* Improve Shader-Side changes.

* Fix potential crash when no color/depth bound

* Workaround random uses of textures in compute.

This was blacklisting textures in a few games despite causing no bugs. Will eventually add full support so this doesn't break anything.

* Fix scales oscillating when changing between non-native scales.

* Scaled textures on compute, cleanup, lazier uniform update.

* Cleanup.

* Fix stupidity

* Address Thog Feedback.

* Cover most of GDK's feedback (two comments remain)

* Fix bad rename

* Move IsDepthStencil to FormatExtensions, add docs.

* Fix default config, square texture detection.

* Three final fixes:

- Nearest copy when texture is integer format.
- Texture2D -> Texture3D copy correctly blacklists the texture before trying an unscaled copy (caused driver error)
- Discount small textures.

* Remove scale threshold.

Not needed right now - we'll see if we run into problems.

* All CPU modification blacklists scale.

* Fix comment.
2020-07-07 04:41:07 +02:00

144 lines
No EOL
5 KiB
C#

using Ryujinx.Graphics.Shader.Decoders;
using Ryujinx.Graphics.Shader.IntermediateRepresentation;
using System.Collections.Generic;
using static Ryujinx.Graphics.Shader.IntermediateRepresentation.OperandHelper;
namespace Ryujinx.Graphics.Shader.Translation
{
class EmitterContext
{
public Block CurrBlock { get; set; }
public OpCode CurrOp { get; set; }
public FeatureFlags UsedFeatures { get; set; }
public ShaderConfig Config { get; }
private List<Operation> _operations;
private Dictionary<ulong, Operand> _labels;
public EmitterContext(ShaderConfig config)
{
Config = config;
_operations = new List<Operation>();
_labels = new Dictionary<ulong, Operand>();
}
public Operand Add(Instruction inst, Operand dest = null, params Operand[] sources)
{
Operation operation = new Operation(inst, dest, sources);
Add(operation);
return dest;
}
public void Add(Operation operation)
{
_operations.Add(operation);
}
public void FlagAttributeRead(int attribute)
{
if (Config.Stage == ShaderStage.Fragment)
{
switch (attribute)
{
case AttributeConsts.PositionX:
case AttributeConsts.PositionY:
UsedFeatures |= FeatureFlags.FragCoordXY;
break;
}
}
}
public void MarkLabel(Operand label)
{
Add(Instruction.MarkLabel, label);
}
public Operand GetLabel(ulong address)
{
if (!_labels.TryGetValue(address, out Operand label))
{
label = Label();
_labels.Add(address, label);
}
return label;
}
public void PrepareForReturn()
{
if (Config.Stage == ShaderStage.Vertex && (Config.Flags & TranslationFlags.VertexA) == 0)
{
// Here we attempt to implement viewport swizzle on the vertex shader.
// Perform permutation and negation of the output gl_Position components.
// Note that per-viewport swizzling can't be supported using this approach.
int swizzleX = Config.GpuAccessor.QueryViewportSwizzle(0);
int swizzleY = Config.GpuAccessor.QueryViewportSwizzle(1);
int swizzleZ = Config.GpuAccessor.QueryViewportSwizzle(2);
int swizzleW = Config.GpuAccessor.QueryViewportSwizzle(3);
bool nonStandardSwizzle = swizzleX != 0 || swizzleY != 2 || swizzleZ != 4 || swizzleW != 6;
if (!Config.GpuAccessor.QuerySupportsViewportSwizzle() && nonStandardSwizzle)
{
Operand[] temp = new Operand[4];
temp[0] = this.Copy(Attribute(AttributeConsts.PositionX));
temp[1] = this.Copy(Attribute(AttributeConsts.PositionY));
temp[2] = this.Copy(Attribute(AttributeConsts.PositionZ));
temp[3] = this.Copy(Attribute(AttributeConsts.PositionW));
this.Copy(Attribute(AttributeConsts.PositionX), this.FPNegate(temp[(swizzleX >> 1) & 3], (swizzleX & 1) != 0));
this.Copy(Attribute(AttributeConsts.PositionY), this.FPNegate(temp[(swizzleY >> 1) & 3], (swizzleY & 1) != 0));
this.Copy(Attribute(AttributeConsts.PositionZ), this.FPNegate(temp[(swizzleZ >> 1) & 3], (swizzleZ & 1) != 0));
this.Copy(Attribute(AttributeConsts.PositionW), this.FPNegate(temp[(swizzleW >> 1) & 3], (swizzleW & 1) != 0));
}
}
else if (Config.Stage == ShaderStage.Fragment)
{
if (Config.OmapDepth)
{
Operand dest = Attribute(AttributeConsts.FragmentOutputDepth);
Operand src = Register(Config.GetDepthRegister(), RegisterType.Gpr);
this.Copy(dest, src);
}
int regIndex = 0;
for (int attachment = 0; attachment < 8; attachment++)
{
OmapTarget target = Config.OmapTargets[attachment];
for (int component = 0; component < 4; component++)
{
if (target.ComponentEnabled(component))
{
Operand dest = Attribute(AttributeConsts.FragmentOutputColorBase + attachment * 16 + component * 4);
Operand src = Register(regIndex, RegisterType.Gpr);
this.Copy(dest, src);
regIndex++;
}
}
}
}
}
public Operation[] GetOperations()
{
return _operations.ToArray();
}
}
}