Ryujinx/Ryujinx.Graphics/Graphics3d/NvGpuEngine3d.cs
gdkchan c86aacde76
NVDEC implementation using FFmpeg (#443)
* Initial nvdec implementation using FFmpeg

* Fix swapped channels on the video decoder and the G8R8 texture format

* Fix texture samplers not being set properly (regression)

* Rebased

* Remove unused code introduced on the rebase

* Add support for RGBA8 output format on the video image composer

* Correct spacing

* Some fixes for rebase and other tweaks

* Allow size mismatch on frame copy

* Get rid of GetHostAddress calls on VDec
2018-12-03 00:38:47 -02:00

1015 lines
37 KiB
C#

using Ryujinx.Common;
using Ryujinx.Graphics.Gal;
using Ryujinx.Graphics.Memory;
using Ryujinx.Graphics.Texture;
using System;
using System.Collections.Generic;
namespace Ryujinx.Graphics.Graphics3d
{
class NvGpuEngine3d : INvGpuEngine
{
public int[] Registers { get; private set; }
private NvGpu Gpu;
private Dictionary<int, NvGpuMethod> Methods;
private struct ConstBuffer
{
public bool Enabled;
public long Position;
public int Size;
}
private ConstBuffer[][] ConstBuffers;
private int CurrentInstance = 0;
public NvGpuEngine3d(NvGpu Gpu)
{
this.Gpu = Gpu;
Registers = new int[0xe00];
Methods = new Dictionary<int, NvGpuMethod>();
void AddMethod(int Meth, int Count, int Stride, NvGpuMethod Method)
{
while (Count-- > 0)
{
Methods.Add(Meth, Method);
Meth += Stride;
}
}
AddMethod(0x585, 1, 1, VertexEndGl);
AddMethod(0x674, 1, 1, ClearBuffers);
AddMethod(0x6c3, 1, 1, QueryControl);
AddMethod(0x8e4, 16, 1, CbData);
AddMethod(0x904, 5, 8, CbBind);
ConstBuffers = new ConstBuffer[6][];
for (int Index = 0; Index < ConstBuffers.Length; Index++)
{
ConstBuffers[Index] = new ConstBuffer[18];
}
//Ensure that all components are enabled by default.
//FIXME: Is this correct?
WriteRegister(NvGpuEngine3dReg.ColorMaskN, 0x1111);
WriteRegister(NvGpuEngine3dReg.FrameBufferSrgb, 1);
for (int Index = 0; Index < GalPipelineState.RenderTargetsCount; Index++)
{
WriteRegister(NvGpuEngine3dReg.IBlendNEquationRgb + Index * 8, (int)GalBlendEquation.FuncAdd);
WriteRegister(NvGpuEngine3dReg.IBlendNFuncSrcRgb + Index * 8, (int)GalBlendFactor.One);
WriteRegister(NvGpuEngine3dReg.IBlendNFuncDstRgb + Index * 8, (int)GalBlendFactor.Zero);
WriteRegister(NvGpuEngine3dReg.IBlendNEquationAlpha + Index * 8, (int)GalBlendEquation.FuncAdd);
WriteRegister(NvGpuEngine3dReg.IBlendNFuncSrcAlpha + Index * 8, (int)GalBlendFactor.One);
WriteRegister(NvGpuEngine3dReg.IBlendNFuncDstAlpha + Index * 8, (int)GalBlendFactor.Zero);
}
}
public void CallMethod(NvGpuVmm Vmm, GpuMethodCall MethCall)
{
if (Methods.TryGetValue(MethCall.Method, out NvGpuMethod Method))
{
Method(Vmm, MethCall);
}
else
{
WriteRegister(MethCall);
}
}
private void VertexEndGl(NvGpuVmm Vmm, GpuMethodCall MethCall)
{
LockCaches();
GalPipelineState State = new GalPipelineState();
SetFrameBuffer(State);
SetFrontFace(State);
SetCullFace(State);
SetDepth(State);
SetStencil(State);
SetBlending(State);
SetColorMask(State);
SetPrimitiveRestart(State);
for (int FbIndex = 0; FbIndex < 8; FbIndex++)
{
SetFrameBuffer(Vmm, FbIndex);
}
SetZeta(Vmm);
SetRenderTargets();
long[] Keys = UploadShaders(Vmm);
Gpu.Renderer.Shader.BindProgram();
UploadTextures(Vmm, State, Keys);
UploadConstBuffers(Vmm, State, Keys);
UploadVertexArrays(Vmm, State);
DispatchRender(Vmm, State);
UnlockCaches();
}
private void LockCaches()
{
Gpu.Renderer.Buffer.LockCache();
Gpu.Renderer.Rasterizer.LockCaches();
Gpu.Renderer.Texture.LockCache();
}
private void UnlockCaches()
{
Gpu.Renderer.Buffer.UnlockCache();
Gpu.Renderer.Rasterizer.UnlockCaches();
Gpu.Renderer.Texture.UnlockCache();
}
private void ClearBuffers(NvGpuVmm Vmm, GpuMethodCall MethCall)
{
int Attachment = (MethCall.Argument >> 6) & 0xf;
GalClearBufferFlags Flags = (GalClearBufferFlags)(MethCall.Argument & 0x3f);
float Red = ReadRegisterFloat(NvGpuEngine3dReg.ClearNColor + 0);
float Green = ReadRegisterFloat(NvGpuEngine3dReg.ClearNColor + 1);
float Blue = ReadRegisterFloat(NvGpuEngine3dReg.ClearNColor + 2);
float Alpha = ReadRegisterFloat(NvGpuEngine3dReg.ClearNColor + 3);
float Depth = ReadRegisterFloat(NvGpuEngine3dReg.ClearDepth);
int Stencil = ReadRegister(NvGpuEngine3dReg.ClearStencil);
SetFrameBuffer(Vmm, Attachment);
SetZeta(Vmm);
SetRenderTargets();
Gpu.Renderer.RenderTarget.Bind();
Gpu.Renderer.Rasterizer.ClearBuffers(Flags, Attachment, Red, Green, Blue, Alpha, Depth, Stencil);
Gpu.Renderer.Pipeline.ResetDepthMask();
Gpu.Renderer.Pipeline.ResetColorMask(Attachment);
}
private void SetFrameBuffer(NvGpuVmm Vmm, int FbIndex)
{
long VA = MakeInt64From2xInt32(NvGpuEngine3dReg.FrameBufferNAddress + FbIndex * 0x10);
int SurfFormat = ReadRegister(NvGpuEngine3dReg.FrameBufferNFormat + FbIndex * 0x10);
if (VA == 0 || SurfFormat == 0)
{
Gpu.Renderer.RenderTarget.UnbindColor(FbIndex);
return;
}
long Key = Vmm.GetPhysicalAddress(VA);
int Width = ReadRegister(NvGpuEngine3dReg.FrameBufferNWidth + FbIndex * 0x10);
int Height = ReadRegister(NvGpuEngine3dReg.FrameBufferNHeight + FbIndex * 0x10);
int BlockDim = ReadRegister(NvGpuEngine3dReg.FrameBufferNBlockDim + FbIndex * 0x10);
int GobBlockHeight = 1 << ((BlockDim >> 4) & 7);
GalMemoryLayout Layout = (GalMemoryLayout)((BlockDim >> 12) & 1);
float TX = ReadRegisterFloat(NvGpuEngine3dReg.ViewportNTranslateX + FbIndex * 8);
float TY = ReadRegisterFloat(NvGpuEngine3dReg.ViewportNTranslateY + FbIndex * 8);
float SX = ReadRegisterFloat(NvGpuEngine3dReg.ViewportNScaleX + FbIndex * 8);
float SY = ReadRegisterFloat(NvGpuEngine3dReg.ViewportNScaleY + FbIndex * 8);
int VpX = (int)MathF.Max(0, TX - MathF.Abs(SX));
int VpY = (int)MathF.Max(0, TY - MathF.Abs(SY));
int VpW = (int)(TX + MathF.Abs(SX)) - VpX;
int VpH = (int)(TY + MathF.Abs(SY)) - VpY;
GalImageFormat Format = ImageUtils.ConvertSurface((GalSurfaceFormat)SurfFormat);
GalImage Image = new GalImage(Width, Height, 1, GobBlockHeight, Layout, Format);
Gpu.ResourceManager.SendColorBuffer(Vmm, Key, FbIndex, Image);
Gpu.Renderer.RenderTarget.SetViewport(FbIndex, VpX, VpY, VpW, VpH);
}
private void SetFrameBuffer(GalPipelineState State)
{
State.FramebufferSrgb = ReadRegisterBool(NvGpuEngine3dReg.FrameBufferSrgb);
State.FlipX = GetFlipSign(NvGpuEngine3dReg.ViewportNScaleX);
State.FlipY = GetFlipSign(NvGpuEngine3dReg.ViewportNScaleY);
int ScreenYControl = ReadRegister(NvGpuEngine3dReg.ScreenYControl);
bool NegateY = (ScreenYControl & 1) != 0;
if (NegateY)
{
State.FlipY = -State.FlipY;
}
}
private void SetZeta(NvGpuVmm Vmm)
{
long VA = MakeInt64From2xInt32(NvGpuEngine3dReg.ZetaAddress);
int ZetaFormat = ReadRegister(NvGpuEngine3dReg.ZetaFormat);
int BlockDim = ReadRegister(NvGpuEngine3dReg.ZetaBlockDimensions);
int GobBlockHeight = 1 << ((BlockDim >> 4) & 7);
GalMemoryLayout Layout = (GalMemoryLayout)((BlockDim >> 12) & 1); //?
bool ZetaEnable = ReadRegisterBool(NvGpuEngine3dReg.ZetaEnable);
if (VA == 0 || ZetaFormat == 0 || !ZetaEnable)
{
Gpu.Renderer.RenderTarget.UnbindZeta();
return;
}
long Key = Vmm.GetPhysicalAddress(VA);
int Width = ReadRegister(NvGpuEngine3dReg.ZetaHoriz);
int Height = ReadRegister(NvGpuEngine3dReg.ZetaVert);
GalImageFormat Format = ImageUtils.ConvertZeta((GalZetaFormat)ZetaFormat);
GalImage Image = new GalImage(Width, Height, 1, GobBlockHeight, Layout, Format);
Gpu.ResourceManager.SendZetaBuffer(Vmm, Key, Image);
}
private long[] UploadShaders(NvGpuVmm Vmm)
{
long[] Keys = new long[5];
long BasePosition = MakeInt64From2xInt32(NvGpuEngine3dReg.ShaderAddress);
int Index = 1;
int VpAControl = ReadRegister(NvGpuEngine3dReg.ShaderNControl);
bool VpAEnable = (VpAControl & 1) != 0;
if (VpAEnable)
{
//Note: The maxwell supports 2 vertex programs, usually
//only VP B is used, but in some cases VP A is also used.
//In this case, it seems to function as an extra vertex
//shader stage.
//The graphics abstraction layer has a special overload for this
//case, which should merge the two shaders into one vertex shader.
int VpAOffset = ReadRegister(NvGpuEngine3dReg.ShaderNOffset);
int VpBOffset = ReadRegister(NvGpuEngine3dReg.ShaderNOffset + 0x10);
long VpAPos = BasePosition + (uint)VpAOffset;
long VpBPos = BasePosition + (uint)VpBOffset;
Keys[(int)GalShaderType.Vertex] = VpBPos;
Gpu.Renderer.Shader.Create(Vmm, VpAPos, VpBPos, GalShaderType.Vertex);
Gpu.Renderer.Shader.Bind(VpBPos);
Index = 2;
}
for (; Index < 6; Index++)
{
GalShaderType Type = GetTypeFromProgram(Index);
int Control = ReadRegister(NvGpuEngine3dReg.ShaderNControl + Index * 0x10);
int Offset = ReadRegister(NvGpuEngine3dReg.ShaderNOffset + Index * 0x10);
//Note: Vertex Program (B) is always enabled.
bool Enable = (Control & 1) != 0 || Index == 1;
if (!Enable)
{
Gpu.Renderer.Shader.Unbind(Type);
continue;
}
long Key = BasePosition + (uint)Offset;
Keys[(int)Type] = Key;
Gpu.Renderer.Shader.Create(Vmm, Key, Type);
Gpu.Renderer.Shader.Bind(Key);
}
return Keys;
}
private static GalShaderType GetTypeFromProgram(int Program)
{
switch (Program)
{
case 0:
case 1: return GalShaderType.Vertex;
case 2: return GalShaderType.TessControl;
case 3: return GalShaderType.TessEvaluation;
case 4: return GalShaderType.Geometry;
case 5: return GalShaderType.Fragment;
}
throw new ArgumentOutOfRangeException(nameof(Program));
}
private void SetFrontFace(GalPipelineState State)
{
float SignX = GetFlipSign(NvGpuEngine3dReg.ViewportNScaleX);
float SignY = GetFlipSign(NvGpuEngine3dReg.ViewportNScaleY);
GalFrontFace FrontFace = (GalFrontFace)ReadRegister(NvGpuEngine3dReg.FrontFace);
//Flipping breaks facing. Flipping front facing too fixes it
if (SignX != SignY)
{
switch (FrontFace)
{
case GalFrontFace.CW: FrontFace = GalFrontFace.CCW; break;
case GalFrontFace.CCW: FrontFace = GalFrontFace.CW; break;
}
}
State.FrontFace = FrontFace;
}
private void SetCullFace(GalPipelineState State)
{
State.CullFaceEnabled = ReadRegisterBool(NvGpuEngine3dReg.CullFaceEnable);
if (State.CullFaceEnabled)
{
State.CullFace = (GalCullFace)ReadRegister(NvGpuEngine3dReg.CullFace);
}
}
private void SetDepth(GalPipelineState State)
{
State.DepthTestEnabled = ReadRegisterBool(NvGpuEngine3dReg.DepthTestEnable);
State.DepthWriteEnabled = ReadRegisterBool(NvGpuEngine3dReg.DepthWriteEnable);
if (State.DepthTestEnabled)
{
State.DepthFunc = (GalComparisonOp)ReadRegister(NvGpuEngine3dReg.DepthTestFunction);
}
State.DepthRangeNear = ReadRegisterFloat(NvGpuEngine3dReg.DepthRangeNNear);
State.DepthRangeFar = ReadRegisterFloat(NvGpuEngine3dReg.DepthRangeNFar);
}
private void SetStencil(GalPipelineState State)
{
State.StencilTestEnabled = ReadRegisterBool(NvGpuEngine3dReg.StencilEnable);
if (State.StencilTestEnabled)
{
State.StencilBackFuncFunc = (GalComparisonOp)ReadRegister(NvGpuEngine3dReg.StencilBackFuncFunc);
State.StencilBackFuncRef = ReadRegister(NvGpuEngine3dReg.StencilBackFuncRef);
State.StencilBackFuncMask = (uint)ReadRegister(NvGpuEngine3dReg.StencilBackFuncMask);
State.StencilBackOpFail = (GalStencilOp)ReadRegister(NvGpuEngine3dReg.StencilBackOpFail);
State.StencilBackOpZFail = (GalStencilOp)ReadRegister(NvGpuEngine3dReg.StencilBackOpZFail);
State.StencilBackOpZPass = (GalStencilOp)ReadRegister(NvGpuEngine3dReg.StencilBackOpZPass);
State.StencilBackMask = (uint)ReadRegister(NvGpuEngine3dReg.StencilBackMask);
State.StencilFrontFuncFunc = (GalComparisonOp)ReadRegister(NvGpuEngine3dReg.StencilFrontFuncFunc);
State.StencilFrontFuncRef = ReadRegister(NvGpuEngine3dReg.StencilFrontFuncRef);
State.StencilFrontFuncMask = (uint)ReadRegister(NvGpuEngine3dReg.StencilFrontFuncMask);
State.StencilFrontOpFail = (GalStencilOp)ReadRegister(NvGpuEngine3dReg.StencilFrontOpFail);
State.StencilFrontOpZFail = (GalStencilOp)ReadRegister(NvGpuEngine3dReg.StencilFrontOpZFail);
State.StencilFrontOpZPass = (GalStencilOp)ReadRegister(NvGpuEngine3dReg.StencilFrontOpZPass);
State.StencilFrontMask = (uint)ReadRegister(NvGpuEngine3dReg.StencilFrontMask);
}
}
private void SetBlending(GalPipelineState State)
{
bool BlendIndependent = ReadRegisterBool(NvGpuEngine3dReg.BlendIndependent);
State.BlendIndependent = BlendIndependent;
for (int Index = 0; Index < GalPipelineState.RenderTargetsCount; Index++)
{
if (BlendIndependent)
{
State.Blends[Index].Enabled = ReadRegisterBool(NvGpuEngine3dReg.IBlendNEnable + Index);
if (State.Blends[Index].Enabled)
{
State.Blends[Index].SeparateAlpha = ReadRegisterBool(NvGpuEngine3dReg.IBlendNSeparateAlpha + Index * 8);
State.Blends[Index].EquationRgb = ReadBlendEquation(NvGpuEngine3dReg.IBlendNEquationRgb + Index * 8);
State.Blends[Index].FuncSrcRgb = ReadBlendFactor (NvGpuEngine3dReg.IBlendNFuncSrcRgb + Index * 8);
State.Blends[Index].FuncDstRgb = ReadBlendFactor (NvGpuEngine3dReg.IBlendNFuncDstRgb + Index * 8);
State.Blends[Index].EquationAlpha = ReadBlendEquation(NvGpuEngine3dReg.IBlendNEquationAlpha + Index * 8);
State.Blends[Index].FuncSrcAlpha = ReadBlendFactor (NvGpuEngine3dReg.IBlendNFuncSrcAlpha + Index * 8);
State.Blends[Index].FuncDstAlpha = ReadBlendFactor (NvGpuEngine3dReg.IBlendNFuncDstAlpha + Index * 8);
}
}
else
{
//It seems that even when independent blend is disabled, the first IBlend enable
//register is still set to indicate whenever blend is enabled or not (?).
State.Blends[Index].Enabled = ReadRegisterBool(NvGpuEngine3dReg.IBlendNEnable);
if (State.Blends[Index].Enabled)
{
State.Blends[Index].SeparateAlpha = ReadRegisterBool(NvGpuEngine3dReg.BlendSeparateAlpha);
State.Blends[Index].EquationRgb = ReadBlendEquation(NvGpuEngine3dReg.BlendEquationRgb);
State.Blends[Index].FuncSrcRgb = ReadBlendFactor (NvGpuEngine3dReg.BlendFuncSrcRgb);
State.Blends[Index].FuncDstRgb = ReadBlendFactor (NvGpuEngine3dReg.BlendFuncDstRgb);
State.Blends[Index].EquationAlpha = ReadBlendEquation(NvGpuEngine3dReg.BlendEquationAlpha);
State.Blends[Index].FuncSrcAlpha = ReadBlendFactor (NvGpuEngine3dReg.BlendFuncSrcAlpha);
State.Blends[Index].FuncDstAlpha = ReadBlendFactor (NvGpuEngine3dReg.BlendFuncDstAlpha);
}
}
}
}
private GalBlendEquation ReadBlendEquation(NvGpuEngine3dReg Register)
{
return (GalBlendEquation)ReadRegister(Register);
}
private GalBlendFactor ReadBlendFactor(NvGpuEngine3dReg Register)
{
return (GalBlendFactor)ReadRegister(Register);
}
private void SetColorMask(GalPipelineState State)
{
bool ColorMaskCommon = ReadRegisterBool(NvGpuEngine3dReg.ColorMaskCommon);
State.ColorMaskCommon = ColorMaskCommon;
for (int Index = 0; Index < GalPipelineState.RenderTargetsCount; Index++)
{
int ColorMask = ReadRegister(NvGpuEngine3dReg.ColorMaskN + (ColorMaskCommon ? 0 : Index));
State.ColorMasks[Index].Red = ((ColorMask >> 0) & 0xf) != 0;
State.ColorMasks[Index].Green = ((ColorMask >> 4) & 0xf) != 0;
State.ColorMasks[Index].Blue = ((ColorMask >> 8) & 0xf) != 0;
State.ColorMasks[Index].Alpha = ((ColorMask >> 12) & 0xf) != 0;
}
}
private void SetPrimitiveRestart(GalPipelineState State)
{
State.PrimitiveRestartEnabled = ReadRegisterBool(NvGpuEngine3dReg.PrimRestartEnable);
if (State.PrimitiveRestartEnabled)
{
State.PrimitiveRestartIndex = (uint)ReadRegister(NvGpuEngine3dReg.PrimRestartIndex);
}
}
private void SetRenderTargets()
{
//Commercial games do not seem to
//bool SeparateFragData = ReadRegisterBool(NvGpuEngine3dReg.RTSeparateFragData);
uint Control = (uint)(ReadRegister(NvGpuEngine3dReg.RTControl));
uint Count = Control & 0xf;
if (Count > 0)
{
int[] Map = new int[Count];
for (int Index = 0; Index < Count; Index++)
{
int Shift = 4 + Index * 3;
Map[Index] = (int)((Control >> Shift) & 7);
}
Gpu.Renderer.RenderTarget.SetMap(Map);
}
else
{
Gpu.Renderer.RenderTarget.SetMap(null);
}
}
private void UploadTextures(NvGpuVmm Vmm, GalPipelineState State, long[] Keys)
{
long BaseShPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.ShaderAddress);
int TextureCbIndex = ReadRegister(NvGpuEngine3dReg.TextureCbIndex);
List<(long, GalImage, GalTextureSampler)> UnboundTextures = new List<(long, GalImage, GalTextureSampler)>();
for (int Index = 0; Index < Keys.Length; Index++)
{
foreach (ShaderDeclInfo DeclInfo in Gpu.Renderer.Shader.GetTextureUsage(Keys[Index]))
{
long Position;
if (DeclInfo.IsCb)
{
Position = ConstBuffers[Index][DeclInfo.Cbuf].Position;
}
else
{
Position = ConstBuffers[Index][TextureCbIndex].Position;
}
int TextureHandle = Vmm.ReadInt32(Position + DeclInfo.Index * 4);
UnboundTextures.Add(UploadTexture(Vmm, TextureHandle));
}
}
for (int Index = 0; Index < UnboundTextures.Count; Index++)
{
(long Key, GalImage Image, GalTextureSampler Sampler) = UnboundTextures[Index];
if (Key == 0)
{
continue;
}
Gpu.Renderer.Texture.Bind(Key, Index, Image);
Gpu.Renderer.Texture.SetSampler(Sampler);
}
}
private (long, GalImage, GalTextureSampler) UploadTexture(NvGpuVmm Vmm, int TextureHandle)
{
if (TextureHandle == 0)
{
//FIXME: Some games like puyo puyo will use handles with the value 0.
//This is a bug, most likely caused by sync issues.
return (0, default(GalImage), default(GalTextureSampler));
}
bool LinkedTsc = ReadRegisterBool(NvGpuEngine3dReg.LinkedTsc);
int TicIndex = (TextureHandle >> 0) & 0xfffff;
int TscIndex = LinkedTsc ? TicIndex : (TextureHandle >> 20) & 0xfff;
long TicPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.TexHeaderPoolOffset);
long TscPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.TexSamplerPoolOffset);
TicPosition += TicIndex * 0x20;
TscPosition += TscIndex * 0x20;
GalImage Image = TextureFactory.MakeTexture(Vmm, TicPosition);
GalTextureSampler Sampler = TextureFactory.MakeSampler(Gpu, Vmm, TscPosition);
long Key = Vmm.ReadInt64(TicPosition + 4) & 0xffffffffffff;
if (Image.Layout == GalMemoryLayout.BlockLinear)
{
Key &= ~0x1ffL;
}
else if (Image.Layout == GalMemoryLayout.Pitch)
{
Key &= ~0x1fL;
}
Key = Vmm.GetPhysicalAddress(Key);
if (Key == -1)
{
//FIXME: Shouldn't ignore invalid addresses.
return (0, default(GalImage), default(GalTextureSampler));
}
Gpu.ResourceManager.SendTexture(Vmm, Key, Image);
return (Key, Image, Sampler);
}
private void UploadConstBuffers(NvGpuVmm Vmm, GalPipelineState State, long[] Keys)
{
for (int Stage = 0; Stage < Keys.Length; Stage++)
{
foreach (ShaderDeclInfo DeclInfo in Gpu.Renderer.Shader.GetConstBufferUsage(Keys[Stage]))
{
ConstBuffer Cb = ConstBuffers[Stage][DeclInfo.Cbuf];
if (!Cb.Enabled)
{
continue;
}
long Key = Vmm.GetPhysicalAddress(Cb.Position);
if (Gpu.ResourceManager.MemoryRegionModified(Vmm, Key, Cb.Size, NvGpuBufferType.ConstBuffer))
{
if (Vmm.TryGetHostAddress(Cb.Position, Cb.Size, out IntPtr CbPtr))
{
Gpu.Renderer.Buffer.SetData(Key, Cb.Size, CbPtr);
}
else
{
Gpu.Renderer.Buffer.SetData(Key, Vmm.ReadBytes(Cb.Position, Cb.Size));
}
}
State.ConstBufferKeys[Stage][DeclInfo.Cbuf] = Key;
}
}
}
private void UploadVertexArrays(NvGpuVmm Vmm, GalPipelineState State)
{
long IbPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.IndexArrayAddress);
long IboKey = Vmm.GetPhysicalAddress(IbPosition);
int IndexEntryFmt = ReadRegister(NvGpuEngine3dReg.IndexArrayFormat);
int IndexCount = ReadRegister(NvGpuEngine3dReg.IndexBatchCount);
int PrimCtrl = ReadRegister(NvGpuEngine3dReg.VertexBeginGl);
GalPrimitiveType PrimType = (GalPrimitiveType)(PrimCtrl & 0xffff);
GalIndexFormat IndexFormat = (GalIndexFormat)IndexEntryFmt;
int IndexEntrySize = 1 << IndexEntryFmt;
if (IndexEntrySize > 4)
{
throw new InvalidOperationException("Invalid index entry size \"" + IndexEntrySize + "\"!");
}
if (IndexCount != 0)
{
int IbSize = IndexCount * IndexEntrySize;
bool IboCached = Gpu.Renderer.Rasterizer.IsIboCached(IboKey, (uint)IbSize);
bool UsesLegacyQuads =
PrimType == GalPrimitiveType.Quads ||
PrimType == GalPrimitiveType.QuadStrip;
if (!IboCached || Gpu.ResourceManager.MemoryRegionModified(Vmm, IboKey, (uint)IbSize, NvGpuBufferType.Index))
{
if (!UsesLegacyQuads)
{
if (Vmm.TryGetHostAddress(IbPosition, IbSize, out IntPtr IbPtr))
{
Gpu.Renderer.Rasterizer.CreateIbo(IboKey, IbSize, IbPtr);
}
else
{
Gpu.Renderer.Rasterizer.CreateIbo(IboKey, IbSize, Vmm.ReadBytes(IbPosition, IbSize));
}
}
else
{
byte[] Buffer = Vmm.ReadBytes(IbPosition, IbSize);
if (PrimType == GalPrimitiveType.Quads)
{
Buffer = QuadHelper.ConvertIbQuadsToTris(Buffer, IndexEntrySize, IndexCount);
}
else /* if (PrimType == GalPrimitiveType.QuadStrip) */
{
Buffer = QuadHelper.ConvertIbQuadStripToTris(Buffer, IndexEntrySize, IndexCount);
}
Gpu.Renderer.Rasterizer.CreateIbo(IboKey, IbSize, Buffer);
}
}
if (!UsesLegacyQuads)
{
Gpu.Renderer.Rasterizer.SetIndexArray(IbSize, IndexFormat);
}
else
{
if (PrimType == GalPrimitiveType.Quads)
{
Gpu.Renderer.Rasterizer.SetIndexArray(QuadHelper.ConvertIbSizeQuadsToTris(IbSize), IndexFormat);
}
else /* if (PrimType == GalPrimitiveType.QuadStrip) */
{
Gpu.Renderer.Rasterizer.SetIndexArray(QuadHelper.ConvertIbSizeQuadStripToTris(IbSize), IndexFormat);
}
}
}
List<GalVertexAttrib>[] Attribs = new List<GalVertexAttrib>[32];
for (int Attr = 0; Attr < 16; Attr++)
{
int Packed = ReadRegister(NvGpuEngine3dReg.VertexAttribNFormat + Attr);
int ArrayIndex = Packed & 0x1f;
if (Attribs[ArrayIndex] == null)
{
Attribs[ArrayIndex] = new List<GalVertexAttrib>();
}
long VbPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.VertexArrayNAddress + ArrayIndex * 4);
bool IsConst = ((Packed >> 6) & 1) != 0;
int Offset = (Packed >> 7) & 0x3fff;
GalVertexAttribSize Size = (GalVertexAttribSize)((Packed >> 21) & 0x3f);
GalVertexAttribType Type = (GalVertexAttribType)((Packed >> 27) & 0x7);
bool IsRgba = ((Packed >> 31) & 1) != 0;
//Note: 16 is the maximum size of an attribute,
//having a component size of 32-bits with 4 elements (a vec4).
byte[] Data = Vmm.ReadBytes(VbPosition + Offset, 16);
Attribs[ArrayIndex].Add(new GalVertexAttrib(Attr, IsConst, Offset, Data, Size, Type, IsRgba));
}
State.VertexBindings = new GalVertexBinding[32];
for (int Index = 0; Index < 32; Index++)
{
if (Attribs[Index] == null)
{
continue;
}
int Control = ReadRegister(NvGpuEngine3dReg.VertexArrayNControl + Index * 4);
bool Enable = (Control & 0x1000) != 0;
if (!Enable)
{
continue;
}
long VbPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.VertexArrayNAddress + Index * 4);
long VbEndPos = MakeInt64From2xInt32(NvGpuEngine3dReg.VertexArrayNEndAddr + Index * 2);
int VertexDivisor = ReadRegister(NvGpuEngine3dReg.VertexArrayNDivisor + Index * 4);
bool Instanced = ReadRegisterBool(NvGpuEngine3dReg.VertexArrayNInstance + Index);
int Stride = Control & 0xfff;
if (Instanced && VertexDivisor != 0)
{
VbPosition += Stride * (CurrentInstance / VertexDivisor);
}
if (VbPosition > VbEndPos)
{
//Instance is invalid, ignore the draw call
continue;
}
long VboKey = Vmm.GetPhysicalAddress(VbPosition);
long VbSize = (VbEndPos - VbPosition) + 1;
bool VboCached = Gpu.Renderer.Rasterizer.IsVboCached(VboKey, VbSize);
if (!VboCached || Gpu.ResourceManager.MemoryRegionModified(Vmm, VboKey, VbSize, NvGpuBufferType.Vertex))
{
if (Vmm.TryGetHostAddress(VbPosition, VbSize, out IntPtr VbPtr))
{
Gpu.Renderer.Rasterizer.CreateVbo(VboKey, (int)VbSize, VbPtr);
}
else
{
Gpu.Renderer.Rasterizer.CreateVbo(VboKey, Vmm.ReadBytes(VbPosition, VbSize));
}
}
State.VertexBindings[Index].Enabled = true;
State.VertexBindings[Index].Stride = Stride;
State.VertexBindings[Index].VboKey = VboKey;
State.VertexBindings[Index].Instanced = Instanced;
State.VertexBindings[Index].Divisor = VertexDivisor;
State.VertexBindings[Index].Attribs = Attribs[Index].ToArray();
}
}
private void DispatchRender(NvGpuVmm Vmm, GalPipelineState State)
{
int IndexCount = ReadRegister(NvGpuEngine3dReg.IndexBatchCount);
int PrimCtrl = ReadRegister(NvGpuEngine3dReg.VertexBeginGl);
GalPrimitiveType PrimType = (GalPrimitiveType)(PrimCtrl & 0xffff);
bool InstanceNext = ((PrimCtrl >> 26) & 1) != 0;
bool InstanceCont = ((PrimCtrl >> 27) & 1) != 0;
if (InstanceNext && InstanceCont)
{
throw new InvalidOperationException("GPU tried to increase and reset instance count at the same time");
}
if (InstanceNext)
{
CurrentInstance++;
}
else if (!InstanceCont)
{
CurrentInstance = 0;
}
State.Instance = CurrentInstance;
Gpu.Renderer.Pipeline.Bind(State);
Gpu.Renderer.RenderTarget.Bind();
if (IndexCount != 0)
{
int IndexEntryFmt = ReadRegister(NvGpuEngine3dReg.IndexArrayFormat);
int IndexFirst = ReadRegister(NvGpuEngine3dReg.IndexBatchFirst);
int VertexBase = ReadRegister(NvGpuEngine3dReg.VertexArrayElemBase);
long IndexPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.IndexArrayAddress);
long IboKey = Vmm.GetPhysicalAddress(IndexPosition);
//Quad primitive types were deprecated on OpenGL 3.x,
//they are converted to a triangles index buffer on IB creation,
//so we should use the triangles type here too.
if (PrimType == GalPrimitiveType.Quads ||
PrimType == GalPrimitiveType.QuadStrip)
{
PrimType = GalPrimitiveType.Triangles;
//Note: We assume that index first points to the first
//vertex of a quad, if it points to the middle of a
//quad (First % 4 != 0 for Quads) then it will not work properly.
if (PrimType == GalPrimitiveType.Quads)
{
IndexFirst = QuadHelper.ConvertIbSizeQuadsToTris(IndexFirst);
}
else /* if (PrimType == GalPrimitiveType.QuadStrip) */
{
IndexFirst = QuadHelper.ConvertIbSizeQuadStripToTris(IndexFirst);
}
}
Gpu.Renderer.Rasterizer.DrawElements(IboKey, IndexFirst, VertexBase, PrimType);
}
else
{
int VertexFirst = ReadRegister(NvGpuEngine3dReg.VertexArrayFirst);
int VertexCount = ReadRegister(NvGpuEngine3dReg.VertexArrayCount);
Gpu.Renderer.Rasterizer.DrawArrays(VertexFirst, VertexCount, PrimType);
}
//Is the GPU really clearing those registers after draw?
WriteRegister(NvGpuEngine3dReg.IndexBatchFirst, 0);
WriteRegister(NvGpuEngine3dReg.IndexBatchCount, 0);
}
private enum QueryMode
{
WriteSeq,
Sync,
WriteCounterAndTimestamp
}
private void QueryControl(NvGpuVmm Vmm, GpuMethodCall MethCall)
{
WriteRegister(MethCall);
long Position = MakeInt64From2xInt32(NvGpuEngine3dReg.QueryAddress);
int Seq = Registers[(int)NvGpuEngine3dReg.QuerySequence];
int Ctrl = Registers[(int)NvGpuEngine3dReg.QueryControl];
QueryMode Mode = (QueryMode)(Ctrl & 3);
switch (Mode)
{
case QueryMode.WriteSeq: Vmm.WriteInt32(Position, Seq); break;
case QueryMode.WriteCounterAndTimestamp:
{
//TODO: Implement counters.
long Counter = 1;
long Timestamp = PerformanceCounter.ElapsedMilliseconds;
Timestamp = (long)(Timestamp * 615384.615385);
Vmm.WriteInt64(Position + 0, Counter);
Vmm.WriteInt64(Position + 8, Timestamp);
break;
}
}
}
private void CbData(NvGpuVmm Vmm, GpuMethodCall MethCall)
{
long Position = MakeInt64From2xInt32(NvGpuEngine3dReg.ConstBufferAddress);
int Offset = ReadRegister(NvGpuEngine3dReg.ConstBufferOffset);
Vmm.WriteInt32(Position + Offset, MethCall.Argument);
WriteRegister(NvGpuEngine3dReg.ConstBufferOffset, Offset + 4);
Gpu.ResourceManager.ClearPbCache(NvGpuBufferType.ConstBuffer);
}
private void CbBind(NvGpuVmm Vmm, GpuMethodCall MethCall)
{
int Stage = (MethCall.Method - 0x904) >> 3;
int Index = MethCall.Argument;
bool Enabled = (Index & 1) != 0;
Index = (Index >> 4) & 0x1f;
long Position = MakeInt64From2xInt32(NvGpuEngine3dReg.ConstBufferAddress);
long CbKey = Vmm.GetPhysicalAddress(Position);
int Size = ReadRegister(NvGpuEngine3dReg.ConstBufferSize);
if (!Gpu.Renderer.Buffer.IsCached(CbKey, Size))
{
Gpu.Renderer.Buffer.Create(CbKey, Size);
}
ConstBuffer Cb = ConstBuffers[Stage][Index];
if (Cb.Position != Position || Cb.Enabled != Enabled || Cb.Size != Size)
{
ConstBuffers[Stage][Index].Position = Position;
ConstBuffers[Stage][Index].Enabled = Enabled;
ConstBuffers[Stage][Index].Size = Size;
}
}
private float GetFlipSign(NvGpuEngine3dReg Reg)
{
return MathF.Sign(ReadRegisterFloat(Reg));
}
private long MakeInt64From2xInt32(NvGpuEngine3dReg Reg)
{
return
(long)Registers[(int)Reg + 0] << 32 |
(uint)Registers[(int)Reg + 1];
}
private void WriteRegister(GpuMethodCall MethCall)
{
Registers[MethCall.Method] = MethCall.Argument;
}
private int ReadRegister(NvGpuEngine3dReg Reg)
{
return Registers[(int)Reg];
}
private float ReadRegisterFloat(NvGpuEngine3dReg Reg)
{
return BitConverter.Int32BitsToSingle(ReadRegister(Reg));
}
private bool ReadRegisterBool(NvGpuEngine3dReg Reg)
{
return (ReadRegister(Reg) & 1) != 0;
}
private void WriteRegister(NvGpuEngine3dReg Reg, int Value)
{
Registers[(int)Reg] = Value;
}
}
}