citra/externals/soundtouch/TDStretch.cpp

1079 lines
33 KiB
C++
Raw Normal View History

Audio Core (#2) * DSP: Implement Pipe 2 Pipe 2 is a DSP pipe that is used to initialize both the DSP hardware (the application signals to the DSP to initialize) and the application (the DSP provides the memory location of structures in the shared memory region). * AudioCore: Implement codecs (DecodeADPCM, DecodePCM8, DecodePCM16) * DSP Pipes: Implement as FIFO * AudioCore: File structure * AudioCore: More structure * AudioCore: Buffer management * DSP/Source: Reorganise Source's AdvanceFrame. * Audio Output * lolidk * huh? * interp * More interp stuff * oops * Zero State * Don't mix Source frame if it's not enabled * DSP: Forgot to zero a buffer, adjusted thread synchronisation, adjusted format spec for buffers * asdf * Get it to compile and tweak stretching a bit. * revert stretch test * deleted accidental partial catch submodule commit * new audio stretching algorithm * update .gitmodule * fix OS X build * remove getopt from rubberband * #include <stddef> to audio_core.h * typo * -framework Accelerate * OptionTransientsSmooth -> OptionTransientsCrisp * tweak stretch tempo smoothing coefficient. also switch back to smooth. * tweak mroe * remove printf * sola * #include <cmath> * VERY QUICK MERGE TO GET IT WORKING DOESN'T ACTIVATE AUDIO FILTERS * Reminder to self * fix comparison * common/thread: Correct code style * Thread: Make Barrier reusable * fix threading synchonisation code * add profiling code * print error to console when audio clips * fix metallic sound * reduce logspam
2016-04-15 19:10:29 +02:00
////////////////////////////////////////////////////////////////////////////////
///
/// Sampled sound tempo changer/time stretch algorithm. Changes the sound tempo
/// while maintaining the original pitch by using a time domain WSOLA-like
/// method with several performance-increasing tweaks.
///
/// Note : MMX optimized functions reside in a separate, platform-specific
/// file, e.g. 'mmx_win.cpp' or 'mmx_gcc.cpp'
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2015-08-09 00:00:15 +0300 (Sun, 09 Aug 2015) $
// File revision : $Revision: 1.12 $
//
// $Id: TDStretch.cpp 226 2015-08-08 21:00:15Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#include <string.h>
#include <limits.h>
#include <assert.h>
#include <math.h>
#include <float.h>
#include "STTypes.h"
#include "cpu_detect.h"
#include "TDStretch.h"
using namespace soundtouch;
#define max(x, y) (((x) > (y)) ? (x) : (y))
/*****************************************************************************
*
* Constant definitions
*
*****************************************************************************/
// Table for the hierarchical mixing position seeking algorithm
const short _scanOffsets[5][24]={
{ 124, 186, 248, 310, 372, 434, 496, 558, 620, 682, 744, 806,
868, 930, 992, 1054, 1116, 1178, 1240, 1302, 1364, 1426, 1488, 0},
{-100, -75, -50, -25, 25, 50, 75, 100, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ -20, -15, -10, -5, 5, 10, 15, 20, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ -4, -3, -2, -1, 1, 2, 3, 4, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 121, 114, 97, 114, 98, 105, 108, 32, 104, 99, 117, 111,
116, 100, 110, 117, 111, 115, 0, 0, 0, 0, 0, 0}};
/*****************************************************************************
*
* Implementation of the class 'TDStretch'
*
*****************************************************************************/
TDStretch::TDStretch() : FIFOProcessor(&outputBuffer)
{
bQuickSeek = false;
channels = 2;
pMidBuffer = NULL;
pMidBufferUnaligned = NULL;
overlapLength = 0;
bAutoSeqSetting = true;
bAutoSeekSetting = true;
maxnorm = 0;
maxnormf = 1e8;
skipFract = 0;
tempo = 1.0f;
setParameters(44100, DEFAULT_SEQUENCE_MS, DEFAULT_SEEKWINDOW_MS, DEFAULT_OVERLAP_MS);
setTempo(1.0f);
clear();
}
TDStretch::~TDStretch()
{
delete[] pMidBufferUnaligned;
}
// Sets routine control parameters. These control are certain time constants
// defining how the sound is stretched to the desired duration.
//
// 'sampleRate' = sample rate of the sound
// 'sequenceMS' = one processing sequence length in milliseconds (default = 82 ms)
// 'seekwindowMS' = seeking window length for scanning the best overlapping
// position (default = 28 ms)
// 'overlapMS' = overlapping length (default = 12 ms)
void TDStretch::setParameters(int aSampleRate, int aSequenceMS,
int aSeekWindowMS, int aOverlapMS)
{
// accept only positive parameter values - if zero or negative, use old values instead
if (aSampleRate > 0) this->sampleRate = aSampleRate;
if (aOverlapMS > 0) this->overlapMs = aOverlapMS;
if (aSequenceMS > 0)
{
this->sequenceMs = aSequenceMS;
bAutoSeqSetting = false;
}
else if (aSequenceMS == 0)
{
// if zero, use automatic setting
bAutoSeqSetting = true;
}
if (aSeekWindowMS > 0)
{
this->seekWindowMs = aSeekWindowMS;
bAutoSeekSetting = false;
}
else if (aSeekWindowMS == 0)
{
// if zero, use automatic setting
bAutoSeekSetting = true;
}
calcSeqParameters();
calculateOverlapLength(overlapMs);
// set tempo to recalculate 'sampleReq'
setTempo(tempo);
}
/// Get routine control parameters, see setParameters() function.
/// Any of the parameters to this function can be NULL, in such case corresponding parameter
/// value isn't returned.
void TDStretch::getParameters(int *pSampleRate, int *pSequenceMs, int *pSeekWindowMs, int *pOverlapMs) const
{
if (pSampleRate)
{
*pSampleRate = sampleRate;
}
if (pSequenceMs)
{
*pSequenceMs = (bAutoSeqSetting) ? (USE_AUTO_SEQUENCE_LEN) : sequenceMs;
}
if (pSeekWindowMs)
{
*pSeekWindowMs = (bAutoSeekSetting) ? (USE_AUTO_SEEKWINDOW_LEN) : seekWindowMs;
}
if (pOverlapMs)
{
*pOverlapMs = overlapMs;
}
}
// Overlaps samples in 'midBuffer' with the samples in 'pInput'
void TDStretch::overlapMono(SAMPLETYPE *pOutput, const SAMPLETYPE *pInput) const
{
int i;
SAMPLETYPE m1, m2;
m1 = (SAMPLETYPE)0;
m2 = (SAMPLETYPE)overlapLength;
for (i = 0; i < overlapLength ; i ++)
{
pOutput[i] = (pInput[i] * m1 + pMidBuffer[i] * m2 ) / overlapLength;
m1 += 1;
m2 -= 1;
}
}
void TDStretch::clearMidBuffer()
{
memset(pMidBuffer, 0, channels * sizeof(SAMPLETYPE) * overlapLength);
}
void TDStretch::clearInput()
{
inputBuffer.clear();
clearMidBuffer();
}
// Clears the sample buffers
void TDStretch::clear()
{
outputBuffer.clear();
clearInput();
}
// Enables/disables the quick position seeking algorithm. Zero to disable, nonzero
// to enable
void TDStretch::enableQuickSeek(bool enable)
{
bQuickSeek = enable;
}
// Returns nonzero if the quick seeking algorithm is enabled.
bool TDStretch::isQuickSeekEnabled() const
{
return bQuickSeek;
}
// Seeks for the optimal overlap-mixing position.
int TDStretch::seekBestOverlapPosition(const SAMPLETYPE *refPos)
{
if (bQuickSeek)
{
return seekBestOverlapPositionQuick(refPos);
}
else
{
return seekBestOverlapPositionFull(refPos);
}
}
// Overlaps samples in 'midBuffer' with the samples in 'pInputBuffer' at position
// of 'ovlPos'.
inline void TDStretch::overlap(SAMPLETYPE *pOutput, const SAMPLETYPE *pInput, uint ovlPos) const
{
#ifndef USE_MULTICH_ALWAYS
if (channels == 1)
{
// mono sound.
overlapMono(pOutput, pInput + ovlPos);
}
else if (channels == 2)
{
// stereo sound
overlapStereo(pOutput, pInput + 2 * ovlPos);
}
else
#endif // USE_MULTICH_ALWAYS
{
assert(channels > 0);
overlapMulti(pOutput, pInput + channels * ovlPos);
}
}
// Seeks for the optimal overlap-mixing position. The 'stereo' version of the
// routine
//
// The best position is determined as the position where the two overlapped
// sample sequences are 'most alike', in terms of the highest cross-correlation
// value over the overlapping period
int TDStretch::seekBestOverlapPositionFull(const SAMPLETYPE *refPos)
{
int bestOffs;
double bestCorr;
int i;
double norm;
bestCorr = FLT_MIN;
bestOffs = 0;
// Scans for the best correlation value by testing each possible position
// over the permitted range.
bestCorr = calcCrossCorr(refPos, pMidBuffer, norm);
#pragma omp parallel for
for (i = 1; i < seekLength; i ++)
{
double corr;
// Calculates correlation value for the mixing position corresponding to 'i'
#ifdef _OPENMP
// in parallel OpenMP mode, can't use norm accumulator version as parallel executor won't
// iterate the loop in sequential order
corr = calcCrossCorr(refPos + channels * i, pMidBuffer, norm);
#else
// In non-parallel version call "calcCrossCorrAccumulate" that is otherwise same
// as "calcCrossCorr", but saves time by reusing & updating previously stored
// "norm" value
corr = calcCrossCorrAccumulate(refPos + channels * i, pMidBuffer, norm);
#endif
// heuristic rule to slightly favour values close to mid of the range
double tmp = (double)(2 * i - seekLength) / (double)seekLength;
corr = ((corr + 0.1) * (1.0 - 0.25 * tmp * tmp));
// Checks for the highest correlation value
if (corr > bestCorr)
{
// For optimal performance, enter critical section only in case that best value found.
// in such case repeat 'if' condition as it's possible that parallel execution may have
// updated the bestCorr value in the mean time
#pragma omp critical
if (corr > bestCorr)
{
bestCorr = corr;
bestOffs = i;
}
}
}
#ifdef SOUNDTOUCH_INTEGER_SAMPLES
adaptNormalizer();
#endif
// clear cross correlation routine state if necessary (is so e.g. in MMX routines).
clearCrossCorrState();
return bestOffs;
}
// Quick seek algorithm for improved runtime-performance: First roughly scans through the
// correlation area, and then scan surroundings of two best preliminary correlation candidates
// with improved precision
//
// Based on testing:
// - This algorithm gives on average 99% as good match as the full algorith
// - this quick seek algorithm finds the best match on ~90% of cases
// - on those 10% of cases when this algorithm doesn't find best match,
// it still finds on average ~90% match vs. the best possible match
int TDStretch::seekBestOverlapPositionQuick(const SAMPLETYPE *refPos)
{
#define _MIN(a, b) (((a) < (b)) ? (a) : (b))
#define SCANSTEP 16
#define SCANWIND 8
int bestOffs;
int i;
int bestOffs2;
float bestCorr, corr;
float bestCorr2;
double norm;
// note: 'float' types used in this function in case that the platform would need to use software-fp
bestCorr = FLT_MIN;
bestOffs = SCANWIND;
bestCorr2 = FLT_MIN;
bestOffs2 = 0;
int best = 0;
// Scans for the best correlation value by testing each possible position
// over the permitted range. Look for two best matches on the first pass to
// increase possibility of ideal match.
//
// Begin from "SCANSTEP" instead of SCANWIND to make the calculation
// catch the 'middlepoint' of seekLength vector as that's the a-priori
// expected best match position
//
// Roughly:
// - 15% of cases find best result directly on the first round,
// - 75% cases find better match on 2nd round around the best match from 1st round
// - 10% cases find better match on 2nd round around the 2nd-best-match from 1st round
for (i = SCANSTEP; i < seekLength - SCANWIND - 1; i += SCANSTEP)
{
// Calculates correlation value for the mixing position corresponding
// to 'i'
corr = (float)calcCrossCorr(refPos + channels*i, pMidBuffer, norm);
// heuristic rule to slightly favour values close to mid of the seek range
float tmp = (float)(2 * i - seekLength - 1) / (float)seekLength;
corr = ((corr + 0.1f) * (1.0f - 0.25f * tmp * tmp));
// Checks for the highest correlation value
if (corr > bestCorr)
{
// found new best match. keep the previous best as 2nd best match
bestCorr2 = bestCorr;
bestOffs2 = bestOffs;
bestCorr = corr;
bestOffs = i;
}
else if (corr > bestCorr2)
{
// not new best, but still new 2nd best match
bestCorr2 = corr;
bestOffs2 = i;
}
}
// Scans surroundings of the found best match with small stepping
int end = _MIN(bestOffs + SCANWIND + 1, seekLength);
for (i = bestOffs - SCANWIND; i < end; i++)
{
if (i == bestOffs) continue; // this offset already calculated, thus skip
// Calculates correlation value for the mixing position corresponding
// to 'i'
corr = (float)calcCrossCorr(refPos + channels*i, pMidBuffer, norm);
// heuristic rule to slightly favour values close to mid of the range
float tmp = (float)(2 * i - seekLength - 1) / (float)seekLength;
corr = ((corr + 0.1f) * (1.0f - 0.25f * tmp * tmp));
// Checks for the highest correlation value
if (corr > bestCorr)
{
bestCorr = corr;
bestOffs = i;
best = 1;
}
}
// Scans surroundings of the 2nd best match with small stepping
end = _MIN(bestOffs2 + SCANWIND + 1, seekLength);
for (i = bestOffs2 - SCANWIND; i < end; i++)
{
if (i == bestOffs2) continue; // this offset already calculated, thus skip
// Calculates correlation value for the mixing position corresponding
// to 'i'
corr = (float)calcCrossCorr(refPos + channels*i, pMidBuffer, norm);
// heuristic rule to slightly favour values close to mid of the range
float tmp = (float)(2 * i - seekLength - 1) / (float)seekLength;
corr = ((corr + 0.1f) * (1.0f - 0.25f * tmp * tmp));
// Checks for the highest correlation value
if (corr > bestCorr)
{
bestCorr = corr;
bestOffs = i;
best = 2;
}
}
// clear cross correlation routine state if necessary (is so e.g. in MMX routines).
clearCrossCorrState();
#ifdef SOUNDTOUCH_INTEGER_SAMPLES
adaptNormalizer();
#endif
return bestOffs;
}
/// For integer algorithm: adapt normalization factor divider with music so that
/// it'll not be pessimistically restrictive that can degrade quality on quieter sections
/// yet won't cause integer overflows either
void TDStretch::adaptNormalizer()
{
// Do not adapt normalizer over too silent sequences to avoid averaging filter depleting to
// too low values during pauses in music
if ((maxnorm > 1000) || (maxnormf > 40000000))
{
//norm averaging filter
maxnormf = 0.9f * maxnormf + 0.1f * (float)maxnorm;
if ((maxnorm > 800000000) && (overlapDividerBitsNorm < 16))
{
// large values, so increase divider
overlapDividerBitsNorm++;
if (maxnorm > 1600000000) overlapDividerBitsNorm++; // extra large value => extra increase
}
else if ((maxnormf < 1000000) && (overlapDividerBitsNorm > 0))
{
// extra small values, decrease divider
overlapDividerBitsNorm--;
}
}
maxnorm = 0;
}
/// clear cross correlation routine state if necessary
void TDStretch::clearCrossCorrState()
{
// default implementation is empty.
}
/// Calculates processing sequence length according to tempo setting
void TDStretch::calcSeqParameters()
{
// Adjust tempo param according to tempo, so that variating processing sequence length is used
// at varius tempo settings, between the given low...top limits
#define AUTOSEQ_TEMPO_LOW 0.5 // auto setting low tempo range (-50%)
#define AUTOSEQ_TEMPO_TOP 2.0 // auto setting top tempo range (+100%)
// sequence-ms setting values at above low & top tempo
#define AUTOSEQ_AT_MIN 125.0
#define AUTOSEQ_AT_MAX 50.0
#define AUTOSEQ_K ((AUTOSEQ_AT_MAX - AUTOSEQ_AT_MIN) / (AUTOSEQ_TEMPO_TOP - AUTOSEQ_TEMPO_LOW))
#define AUTOSEQ_C (AUTOSEQ_AT_MIN - (AUTOSEQ_K) * (AUTOSEQ_TEMPO_LOW))
// seek-window-ms setting values at above low & top tempoq
#define AUTOSEEK_AT_MIN 25.0
#define AUTOSEEK_AT_MAX 15.0
#define AUTOSEEK_K ((AUTOSEEK_AT_MAX - AUTOSEEK_AT_MIN) / (AUTOSEQ_TEMPO_TOP - AUTOSEQ_TEMPO_LOW))
#define AUTOSEEK_C (AUTOSEEK_AT_MIN - (AUTOSEEK_K) * (AUTOSEQ_TEMPO_LOW))
#define CHECK_LIMITS(x, mi, ma) (((x) < (mi)) ? (mi) : (((x) > (ma)) ? (ma) : (x)))
double seq, seek;
if (bAutoSeqSetting)
{
seq = AUTOSEQ_C + AUTOSEQ_K * tempo;
seq = CHECK_LIMITS(seq, AUTOSEQ_AT_MAX, AUTOSEQ_AT_MIN);
sequenceMs = (int)(seq + 0.5);
}
if (bAutoSeekSetting)
{
seek = AUTOSEEK_C + AUTOSEEK_K * tempo;
seek = CHECK_LIMITS(seek, AUTOSEEK_AT_MAX, AUTOSEEK_AT_MIN);
seekWindowMs = (int)(seek + 0.5);
}
// Update seek window lengths
seekWindowLength = (sampleRate * sequenceMs) / 1000;
if (seekWindowLength < 2 * overlapLength)
{
seekWindowLength = 2 * overlapLength;
}
seekLength = (sampleRate * seekWindowMs) / 1000;
}
// Sets new target tempo. Normal tempo = 'SCALE', smaller values represent slower
// tempo, larger faster tempo.
void TDStretch::setTempo(double newTempo)
{
int intskip;
tempo = newTempo;
// Calculate new sequence duration
calcSeqParameters();
// Calculate ideal skip length (according to tempo value)
nominalSkip = tempo * (seekWindowLength - overlapLength);
intskip = (int)(nominalSkip + 0.5);
// Calculate how many samples are needed in the 'inputBuffer' to
// process another batch of samples
//sampleReq = max(intskip + overlapLength, seekWindowLength) + seekLength / 2;
sampleReq = max(intskip + overlapLength, seekWindowLength) + seekLength;
}
// Sets the number of channels, 1 = mono, 2 = stereo
void TDStretch::setChannels(int numChannels)
{
assert(numChannels > 0);
if (channels == numChannels) return;
// assert(numChannels == 1 || numChannels == 2);
channels = numChannels;
inputBuffer.setChannels(channels);
outputBuffer.setChannels(channels);
// re-init overlap/buffer
overlapLength=0;
setParameters(sampleRate);
}
// nominal tempo, no need for processing, just pass the samples through
// to outputBuffer
/*
void TDStretch::processNominalTempo()
{
assert(tempo == 1.0f);
if (bMidBufferDirty)
{
// If there are samples in pMidBuffer waiting for overlapping,
// do a single sliding overlapping with them in order to prevent a
// clicking distortion in the output sound
if (inputBuffer.numSamples() < overlapLength)
{
// wait until we've got overlapLength input samples
return;
}
// Mix the samples in the beginning of 'inputBuffer' with the
// samples in 'midBuffer' using sliding overlapping
overlap(outputBuffer.ptrEnd(overlapLength), inputBuffer.ptrBegin(), 0);
outputBuffer.putSamples(overlapLength);
inputBuffer.receiveSamples(overlapLength);
clearMidBuffer();
// now we've caught the nominal sample flow and may switch to
// bypass mode
}
// Simply bypass samples from input to output
outputBuffer.moveSamples(inputBuffer);
}
*/
// Processes as many processing frames of the samples 'inputBuffer', store
// the result into 'outputBuffer'
void TDStretch::processSamples()
{
int ovlSkip, offset;
int temp;
/* Removed this small optimization - can introduce a click to sound when tempo setting
crosses the nominal value
if (tempo == 1.0f)
{
// tempo not changed from the original, so bypass the processing
processNominalTempo();
return;
}
*/
// Process samples as long as there are enough samples in 'inputBuffer'
// to form a processing frame.
while ((int)inputBuffer.numSamples() >= sampleReq)
{
// If tempo differs from the normal ('SCALE'), scan for the best overlapping
// position
offset = seekBestOverlapPosition(inputBuffer.ptrBegin());
// Mix the samples in the 'inputBuffer' at position of 'offset' with the
// samples in 'midBuffer' using sliding overlapping
// ... first partially overlap with the end of the previous sequence
// (that's in 'midBuffer')
overlap(outputBuffer.ptrEnd((uint)overlapLength), inputBuffer.ptrBegin(), (uint)offset);
outputBuffer.putSamples((uint)overlapLength);
// ... then copy sequence samples from 'inputBuffer' to output:
// length of sequence
temp = (seekWindowLength - 2 * overlapLength);
// crosscheck that we don't have buffer overflow...
if ((int)inputBuffer.numSamples() < (offset + temp + overlapLength * 2))
{
continue; // just in case, shouldn't really happen
}
outputBuffer.putSamples(inputBuffer.ptrBegin() + channels * (offset + overlapLength), (uint)temp);
// Copies the end of the current sequence from 'inputBuffer' to
// 'midBuffer' for being mixed with the beginning of the next
// processing sequence and so on
assert((offset + temp + overlapLength * 2) <= (int)inputBuffer.numSamples());
memcpy(pMidBuffer, inputBuffer.ptrBegin() + channels * (offset + temp + overlapLength),
channels * sizeof(SAMPLETYPE) * overlapLength);
// Remove the processed samples from the input buffer. Update
// the difference between integer & nominal skip step to 'skipFract'
// in order to prevent the error from accumulating over time.
skipFract += nominalSkip; // real skip size
ovlSkip = (int)skipFract; // rounded to integer skip
skipFract -= ovlSkip; // maintain the fraction part, i.e. real vs. integer skip
inputBuffer.receiveSamples((uint)ovlSkip);
}
}
// Adds 'numsamples' pcs of samples from the 'samples' memory position into
// the input of the object.
void TDStretch::putSamples(const SAMPLETYPE *samples, uint nSamples)
{
// Add the samples into the input buffer
inputBuffer.putSamples(samples, nSamples);
// Process the samples in input buffer
processSamples();
}
/// Set new overlap length parameter & reallocate RefMidBuffer if necessary.
void TDStretch::acceptNewOverlapLength(int newOverlapLength)
{
int prevOvl;
assert(newOverlapLength >= 0);
prevOvl = overlapLength;
overlapLength = newOverlapLength;
if (overlapLength > prevOvl)
{
delete[] pMidBufferUnaligned;
pMidBufferUnaligned = new SAMPLETYPE[overlapLength * channels + 16 / sizeof(SAMPLETYPE)];
// ensure that 'pMidBuffer' is aligned to 16 byte boundary for efficiency
pMidBuffer = (SAMPLETYPE *)SOUNDTOUCH_ALIGN_POINTER_16(pMidBufferUnaligned);
clearMidBuffer();
}
}
// Operator 'new' is overloaded so that it automatically creates a suitable instance
// depending on if we've a MMX/SSE/etc-capable CPU available or not.
void * TDStretch::operator new(size_t s)
{
// Notice! don't use "new TDStretch" directly, use "newInstance" to create a new instance instead!
ST_THROW_RT_ERROR("Error in TDStretch::new: Don't use 'new TDStretch' directly, use 'newInstance' member instead!");
return newInstance();
}
TDStretch * TDStretch::newInstance()
{
uint uExtensions;
uExtensions = detectCPUextensions();
// Check if MMX/SSE instruction set extensions supported by CPU
#ifdef SOUNDTOUCH_ALLOW_MMX
// MMX routines available only with integer sample types
if (uExtensions & SUPPORT_MMX)
{
return ::new TDStretchMMX;
}
else
#endif // SOUNDTOUCH_ALLOW_MMX
#ifdef SOUNDTOUCH_ALLOW_SSE
if (uExtensions & SUPPORT_SSE)
{
// SSE support
return ::new TDStretchSSE;
}
else
#endif // SOUNDTOUCH_ALLOW_SSE
{
// ISA optimizations not supported, use plain C version
return ::new TDStretch;
}
}
//////////////////////////////////////////////////////////////////////////////
//
// Integer arithmetics specific algorithm implementations.
//
//////////////////////////////////////////////////////////////////////////////
#ifdef SOUNDTOUCH_INTEGER_SAMPLES
// Overlaps samples in 'midBuffer' with the samples in 'input'. The 'Stereo'
// version of the routine.
void TDStretch::overlapStereo(short *poutput, const short *input) const
{
int i;
short temp;
int cnt2;
for (i = 0; i < overlapLength ; i ++)
{
temp = (short)(overlapLength - i);
cnt2 = 2 * i;
poutput[cnt2] = (input[cnt2] * i + pMidBuffer[cnt2] * temp ) / overlapLength;
poutput[cnt2 + 1] = (input[cnt2 + 1] * i + pMidBuffer[cnt2 + 1] * temp ) / overlapLength;
}
}
// Overlaps samples in 'midBuffer' with the samples in 'input'. The 'Multi'
// version of the routine.
void TDStretch::overlapMulti(SAMPLETYPE *poutput, const SAMPLETYPE *input) const
{
SAMPLETYPE m1=(SAMPLETYPE)0;
SAMPLETYPE m2;
int i=0;
for (m2 = (SAMPLETYPE)overlapLength; m2; m2 --)
{
for (int c = 0; c < channels; c ++)
{
poutput[i] = (input[i] * m1 + pMidBuffer[i] * m2) / overlapLength;
i++;
}
m1++;
}
}
// Calculates the x having the closest 2^x value for the given value
static int _getClosest2Power(double value)
{
return (int)(log(value) / log(2.0) + 0.5);
}
/// Calculates overlap period length in samples.
/// Integer version rounds overlap length to closest power of 2
/// for a divide scaling operation.
void TDStretch::calculateOverlapLength(int aoverlapMs)
{
int newOvl;
assert(aoverlapMs >= 0);
// calculate overlap length so that it's power of 2 - thus it's easy to do
// integer division by right-shifting. Term "-1" at end is to account for
// the extra most significatnt bit left unused in result by signed multiplication
overlapDividerBitsPure = _getClosest2Power((sampleRate * aoverlapMs) / 1000.0) - 1;
if (overlapDividerBitsPure > 9) overlapDividerBitsPure = 9;
if (overlapDividerBitsPure < 3) overlapDividerBitsPure = 3;
newOvl = (int)pow(2.0, (int)overlapDividerBitsPure + 1); // +1 => account for -1 above
acceptNewOverlapLength(newOvl);
overlapDividerBitsNorm = overlapDividerBitsPure;
// calculate sloping divider so that crosscorrelation operation won't
// overflow 32-bit register. Max. sum of the crosscorrelation sum without
// divider would be 2^30*(N^3-N)/3, where N = overlap length
slopingDivider = (newOvl * newOvl - 1) / 3;
}
double TDStretch::calcCrossCorr(const short *mixingPos, const short *compare, double &norm)
{
long corr;
unsigned long lnorm;
int i;
corr = lnorm = 0;
// Same routine for stereo and mono. For stereo, unroll loop for better
// efficiency and gives slightly better resolution against rounding.
// For mono it same routine, just unrolls loop by factor of 4
for (i = 0; i < channels * overlapLength; i += 4)
{
corr += (mixingPos[i] * compare[i] +
mixingPos[i + 1] * compare[i + 1]) >> overlapDividerBitsNorm; // notice: do intermediate division here to avoid integer overflow
corr += (mixingPos[i + 2] * compare[i + 2] +
mixingPos[i + 3] * compare[i + 3]) >> overlapDividerBitsNorm;
lnorm += (mixingPos[i] * mixingPos[i] +
mixingPos[i + 1] * mixingPos[i + 1]) >> overlapDividerBitsNorm; // notice: do intermediate division here to avoid integer overflow
lnorm += (mixingPos[i + 2] * mixingPos[i + 2] +
mixingPos[i + 3] * mixingPos[i + 3]) >> overlapDividerBitsNorm;
}
if (lnorm > maxnorm)
{
maxnorm = lnorm;
}
// Normalize result by dividing by sqrt(norm) - this step is easiest
// done using floating point operation
norm = (double)lnorm;
return (double)corr / sqrt((norm < 1e-9) ? 1.0 : norm);
}
/// Update cross-correlation by accumulating "norm" coefficient by previously calculated value
double TDStretch::calcCrossCorrAccumulate(const short *mixingPos, const short *compare, double &norm)
{
long corr;
unsigned long lnorm;
int i;
// cancel first normalizer tap from previous round
lnorm = 0;
for (i = 1; i <= channels; i ++)
{
lnorm -= (mixingPos[-i] * mixingPos[-i]) >> overlapDividerBitsNorm;
}
corr = 0;
// Same routine for stereo and mono. For stereo, unroll loop for better
// efficiency and gives slightly better resolution against rounding.
// For mono it same routine, just unrolls loop by factor of 4
for (i = 0; i < channels * overlapLength; i += 4)
{
corr += (mixingPos[i] * compare[i] +
mixingPos[i + 1] * compare[i + 1]) >> overlapDividerBitsNorm; // notice: do intermediate division here to avoid integer overflow
corr += (mixingPos[i + 2] * compare[i + 2] +
mixingPos[i + 3] * compare[i + 3]) >> overlapDividerBitsNorm;
}
// update normalizer with last samples of this round
for (int j = 0; j < channels; j ++)
{
i --;
lnorm += (mixingPos[i] * mixingPos[i]) >> overlapDividerBitsNorm;
}
norm += (double)lnorm;
if (norm > maxnorm)
{
maxnorm = (unsigned long)norm;
}
// Normalize result by dividing by sqrt(norm) - this step is easiest
// done using floating point operation
return (double)corr / sqrt((norm < 1e-9) ? 1.0 : norm);
}
#endif // SOUNDTOUCH_INTEGER_SAMPLES
//////////////////////////////////////////////////////////////////////////////
//
// Floating point arithmetics specific algorithm implementations.
//
#ifdef SOUNDTOUCH_FLOAT_SAMPLES
// Overlaps samples in 'midBuffer' with the samples in 'pInput'
void TDStretch::overlapStereo(float *pOutput, const float *pInput) const
{
int i;
float fScale;
float f1;
float f2;
fScale = 1.0f / (float)overlapLength;
f1 = 0;
f2 = 1.0f;
for (i = 0; i < 2 * (int)overlapLength ; i += 2)
{
pOutput[i + 0] = pInput[i + 0] * f1 + pMidBuffer[i + 0] * f2;
pOutput[i + 1] = pInput[i + 1] * f1 + pMidBuffer[i + 1] * f2;
f1 += fScale;
f2 -= fScale;
}
}
// Overlaps samples in 'midBuffer' with the samples in 'input'.
void TDStretch::overlapMulti(float *pOutput, const float *pInput) const
{
int i;
float fScale;
float f1;
float f2;
fScale = 1.0f / (float)overlapLength;
f1 = 0;
f2 = 1.0f;
i=0;
for (int i2 = 0; i2 < overlapLength; i2 ++)
{
// note: Could optimize this slightly by taking into account that always channels > 2
for (int c = 0; c < channels; c ++)
{
pOutput[i] = pInput[i] * f1 + pMidBuffer[i] * f2;
i++;
}
f1 += fScale;
f2 -= fScale;
}
}
/// Calculates overlapInMsec period length in samples.
void TDStretch::calculateOverlapLength(int overlapInMsec)
{
int newOvl;
assert(overlapInMsec >= 0);
newOvl = (sampleRate * overlapInMsec) / 1000;
if (newOvl < 16) newOvl = 16;
// must be divisible by 8
newOvl -= newOvl % 8;
acceptNewOverlapLength(newOvl);
}
/// Calculate cross-correlation
double TDStretch::calcCrossCorr(const float *mixingPos, const float *compare, double &anorm)
{
double corr;
double norm;
int i;
corr = norm = 0;
// Same routine for stereo and mono. For Stereo, unroll by factor of 2.
// For mono it's same routine yet unrollsd by factor of 4.
for (i = 0; i < channels * overlapLength; i += 4)
{
corr += mixingPos[i] * compare[i] +
mixingPos[i + 1] * compare[i + 1];
norm += mixingPos[i] * mixingPos[i] +
mixingPos[i + 1] * mixingPos[i + 1];
// unroll the loop for better CPU efficiency:
corr += mixingPos[i + 2] * compare[i + 2] +
mixingPos[i + 3] * compare[i + 3];
norm += mixingPos[i + 2] * mixingPos[i + 2] +
mixingPos[i + 3] * mixingPos[i + 3];
}
anorm = norm;
return corr / sqrt((norm < 1e-9 ? 1.0 : norm));
}
/// Update cross-correlation by accumulating "norm" coefficient by previously calculated value
double TDStretch::calcCrossCorrAccumulate(const float *mixingPos, const float *compare, double &norm)
{
double corr;
int i;
corr = 0;
// cancel first normalizer tap from previous round
for (i = 1; i <= channels; i ++)
{
norm -= mixingPos[-i] * mixingPos[-i];
}
// Same routine for stereo and mono. For Stereo, unroll by factor of 2.
// For mono it's same routine yet unrollsd by factor of 4.
for (i = 0; i < channels * overlapLength; i += 4)
{
corr += mixingPos[i] * compare[i] +
mixingPos[i + 1] * compare[i + 1] +
mixingPos[i + 2] * compare[i + 2] +
mixingPos[i + 3] * compare[i + 3];
}
// update normalizer with last samples of this round
for (int j = 0; j < channels; j ++)
{
i --;
norm += mixingPos[i] * mixingPos[i];
}
return corr / sqrt((norm < 1e-9 ? 1.0 : norm));
}
#endif // SOUNDTOUCH_FLOAT_SAMPLES