citra/src/core/core_timing.h

235 lines
8.2 KiB
C++
Raw Normal View History

// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#pragma once
/**
* This is a system to schedule events into the emulated machine's future. Time is measured
* in main CPU clock cycles.
*
* To schedule an event, you first have to register its type. This is where you pass in the
* callback. You then schedule events using the type id you get back.
*
* The int cyclesLate that the callbacks get is how many cycles late it was.
* So to schedule a new event on a regular basis:
* inside callback:
* ScheduleEvent(periodInCycles - cyclesLate, callback, "whatever")
*/
#include <chrono>
#include <functional>
#include <limits>
#include <string>
2018-10-27 21:53:20 +02:00
#include <unordered_map>
#include <vector>
#include "common/common_types.h"
#include "common/logging/log.h"
2018-10-27 21:53:20 +02:00
#include "common/threadsafe_queue.h"
// The timing we get from the assembly is 268,111,855.956 Hz
// It is possible that this number isn't just an integer because the compiler could have
// optimized the multiplication by a multiply-by-constant division.
// Rounding to the nearest integer should be fine
constexpr u64 BASE_CLOCK_RATE_ARM11 = 268111856;
constexpr u64 MAX_VALUE_TO_MULTIPLY = std::numeric_limits<s64>::max() / BASE_CLOCK_RATE_ARM11;
inline s64 msToCycles(int ms) {
// since ms is int there is no way to overflow
return BASE_CLOCK_RATE_ARM11 * static_cast<s64>(ms) / 1000;
}
inline s64 msToCycles(float ms) {
return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.001f) * ms);
}
inline s64 msToCycles(double ms) {
return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.001) * ms);
}
inline s64 usToCycles(float us) {
return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.000001f) * us);
}
inline s64 usToCycles(int us) {
return (BASE_CLOCK_RATE_ARM11 * static_cast<s64>(us) / 1000000);
}
inline s64 usToCycles(s64 us) {
if (us / 1000000 > static_cast<s64>(MAX_VALUE_TO_MULTIPLY)) {
2018-06-29 13:18:07 +02:00
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
return std::numeric_limits<s64>::max();
}
if (us > static_cast<s64>(MAX_VALUE_TO_MULTIPLY)) {
2018-06-29 13:18:07 +02:00
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
return BASE_CLOCK_RATE_ARM11 * (us / 1000000);
}
return (BASE_CLOCK_RATE_ARM11 * us) / 1000000;
}
inline s64 usToCycles(u64 us) {
if (us / 1000000 > MAX_VALUE_TO_MULTIPLY) {
2018-06-29 13:18:07 +02:00
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
return std::numeric_limits<s64>::max();
}
if (us > MAX_VALUE_TO_MULTIPLY) {
2018-06-29 13:18:07 +02:00
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
return BASE_CLOCK_RATE_ARM11 * static_cast<s64>(us / 1000000);
}
return (BASE_CLOCK_RATE_ARM11 * static_cast<s64>(us)) / 1000000;
}
inline s64 nsToCycles(float ns) {
return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.000000001f) * ns);
}
inline s64 nsToCycles(int ns) {
return BASE_CLOCK_RATE_ARM11 * static_cast<s64>(ns) / 1000000000;
}
inline s64 nsToCycles(s64 ns) {
if (ns / 1000000000 > static_cast<s64>(MAX_VALUE_TO_MULTIPLY)) {
2018-06-29 13:18:07 +02:00
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
return std::numeric_limits<s64>::max();
}
if (ns > static_cast<s64>(MAX_VALUE_TO_MULTIPLY)) {
2018-06-29 13:18:07 +02:00
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
return BASE_CLOCK_RATE_ARM11 * (ns / 1000000000);
}
return (BASE_CLOCK_RATE_ARM11 * ns) / 1000000000;
}
inline s64 nsToCycles(u64 ns) {
if (ns / 1000000000 > MAX_VALUE_TO_MULTIPLY) {
2018-06-29 13:18:07 +02:00
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
return std::numeric_limits<s64>::max();
}
if (ns > MAX_VALUE_TO_MULTIPLY) {
2018-06-29 13:18:07 +02:00
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
return BASE_CLOCK_RATE_ARM11 * (static_cast<s64>(ns) / 1000000000);
}
return (BASE_CLOCK_RATE_ARM11 * static_cast<s64>(ns)) / 1000000000;
}
inline u64 cyclesToNs(s64 cycles) {
return cycles * 1000000000 / BASE_CLOCK_RATE_ARM11;
}
inline s64 cyclesToUs(s64 cycles) {
return cycles * 1000000 / BASE_CLOCK_RATE_ARM11;
}
inline u64 cyclesToMs(s64 cycles) {
return cycles * 1000 / BASE_CLOCK_RATE_ARM11;
}
2018-10-27 21:53:20 +02:00
namespace Core {
using TimedCallback = std::function<void(u64 userdata, int cycles_late)>;
2018-10-27 21:53:20 +02:00
struct TimingEventType {
TimedCallback callback;
const std::string* name;
};
class Timing {
public:
~Timing();
/**
* This should only be called from the emu thread, if you are calling it any other thread, you
* are doing something evil
*/
u64 GetTicks() const;
u64 GetIdleTicks() const;
void AddTicks(u64 ticks);
/**
* Returns the event_type identifier. if name is not unique, it will assert.
*/
TimingEventType* RegisterEvent(const std::string& name, TimedCallback callback);
/**
* After the first Advance, the slice lengths and the downcount will be reduced whenever an
* event is scheduled earlier than the current values. Scheduling from a callback will not
* update the downcount until the Advance() completes.
*/
void ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_type, u64 userdata = 0);
/**
* This is to be called when outside of hle threads, such as the graphics thread, wants to
* schedule things to be executed on the main thread.
* Not that this doesn't change slice_length and thus events scheduled by this might be called
* with a delay of up to MAX_SLICE_LENGTH
*/
void ScheduleEventThreadsafe(s64 cycles_into_future, const TimingEventType* event_type,
u64 userdata);
void UnscheduleEvent(const TimingEventType* event_type, u64 userdata);
/// We only permit one event of each type in the queue at a time.
void RemoveEvent(const TimingEventType* event_type);
void RemoveNormalAndThreadsafeEvent(const TimingEventType* event_type);
/** Advance must be called at the beginning of dispatcher loops, not the end. Advance() ends
* the previous timing slice and begins the next one, you must Advance from the previous
* slice to the current one before executing any cycles. CoreTiming starts in slice -1 so an
* Advance() is required to initialize the slice length before the first cycle of emulated
* instructions is executed.
*/
void Advance();
void MoveEvents();
/// Pretend that the main CPU has executed enough cycles to reach the next event.
void Idle();
void ForceExceptionCheck(s64 cycles);
std::chrono::microseconds GetGlobalTimeUs() const;
s64 GetDowncount() const;
private:
struct Event {
s64 time;
u64 fifo_order;
u64 userdata;
const TimingEventType* type;
bool operator>(const Event& right) const;
bool operator<(const Event& right) const;
};
static constexpr int MAX_SLICE_LENGTH = 20000;
s64 global_timer = 0;
s64 slice_length = MAX_SLICE_LENGTH;
s64 downcount = MAX_SLICE_LENGTH;
// unordered_map stores each element separately as a linked list node so pointers to
// elements remain stable regardless of rehashes/resizing.
std::unordered_map<std::string, TimingEventType> event_types;
// The queue is a min-heap using std::make_heap/push_heap/pop_heap.
// We don't use std::priority_queue because we need to be able to serialize, unserialize and
// erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't
// accomodated by the standard adaptor class.
std::vector<Event> event_queue;
u64 event_fifo_id = 0;
// the queue for storing the events from other threads threadsafe until they will be added
// to the event_queue by the emu thread
Common::MPSCQueue<Event> ts_queue;
2018-10-27 21:53:20 +02:00
s64 idled_cycles = 0;
// Are we in a function that has been called from Advance()
// If events are sheduled from a function that gets called from Advance(),
// don't change slice_length and downcount.
// The time between CoreTiming being intialized and the first call to Advance() is considered
// the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before
// executing the first cycle of each slice to prepare the slice length and downcount for
// that slice.
bool is_global_timer_sane = true;
};
} // namespace Core