citra/src/audio_core/hle/source.cpp

376 lines
14 KiB
C++
Raw Normal View History

2016-04-25 09:54:57 +02:00
// Copyright 2016 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <array>
#include "audio_core/codec.h"
#include "audio_core/hle/common.h"
#include "audio_core/hle/source.h"
2016-04-25 09:54:57 +02:00
#include "audio_core/interpolate.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/memory.h"
2019-02-18 05:41:48 +01:00
namespace AudioCore::HLE {
2016-04-25 09:54:57 +02:00
SourceStatus::Status Source::Tick(SourceConfiguration::Configuration& config,
const s16_le (&adpcm_coeffs)[16]) {
2016-04-25 09:54:57 +02:00
ParseConfig(config, adpcm_coeffs);
if (state.enabled) {
GenerateFrame();
}
return GetCurrentStatus();
}
void Source::MixInto(QuadFrame32& dest, std::size_t intermediate_mix_id) const {
2016-04-25 09:54:57 +02:00
if (!state.enabled)
return;
const std::array<float, 4>& gains = state.gain.at(intermediate_mix_id);
for (std::size_t samplei = 0; samplei < samples_per_frame; samplei++) {
2016-04-25 09:54:57 +02:00
// Conversion from stereo (current_frame) to quadraphonic (dest) occurs here.
dest[samplei][0] += static_cast<s32>(gains[0] * current_frame[samplei][0]);
dest[samplei][1] += static_cast<s32>(gains[1] * current_frame[samplei][1]);
dest[samplei][2] += static_cast<s32>(gains[2] * current_frame[samplei][0]);
dest[samplei][3] += static_cast<s32>(gains[3] * current_frame[samplei][1]);
}
}
void Source::Reset() {
current_frame.fill({});
state = {};
}
void Source::SetMemory(Memory::MemorySystem& memory) {
memory_system = &memory;
}
void Source::ParseConfig(SourceConfiguration::Configuration& config,
const s16_le (&adpcm_coeffs)[16]) {
2016-04-25 09:54:57 +02:00
if (!config.dirty_raw) {
return;
}
if (config.reset_flag) {
config.reset_flag.Assign(0);
Reset();
2018-06-29 13:18:07 +02:00
LOG_TRACE(Audio_DSP, "source_id={} reset", source_id);
2016-04-25 09:54:57 +02:00
}
if (config.partial_reset_flag) {
config.partial_reset_flag.Assign(0);
state.input_queue = std::priority_queue<Buffer, std::vector<Buffer>, BufferOrder>{};
2018-06-29 13:18:07 +02:00
LOG_TRACE(Audio_DSP, "source_id={} partial_reset", source_id);
2016-04-25 09:54:57 +02:00
}
if (config.enable_dirty) {
config.enable_dirty.Assign(0);
state.enabled = config.enable != 0;
2018-06-29 13:18:07 +02:00
LOG_TRACE(Audio_DSP, "source_id={} enable={}", source_id, state.enabled);
2016-04-25 09:54:57 +02:00
}
if (config.sync_dirty) {
config.sync_dirty.Assign(0);
state.sync = config.sync;
2018-06-29 13:18:07 +02:00
LOG_TRACE(Audio_DSP, "source_id={} sync={}", source_id, state.sync);
2016-04-25 09:54:57 +02:00
}
if (config.rate_multiplier_dirty) {
config.rate_multiplier_dirty.Assign(0);
state.rate_multiplier = config.rate_multiplier;
2018-06-29 13:18:07 +02:00
LOG_TRACE(Audio_DSP, "source_id={} rate={}", source_id, state.rate_multiplier);
2016-04-25 09:54:57 +02:00
if (state.rate_multiplier <= 0) {
2018-06-29 13:18:07 +02:00
LOG_ERROR(Audio_DSP, "Was given an invalid rate multiplier: source_id={} rate={}",
2018-06-29 15:56:12 +02:00
source_id, state.rate_multiplier);
2016-04-25 09:54:57 +02:00
state.rate_multiplier = 1.0f;
// Note: Actual firmware starts producing garbage if this occurs.
}
}
if (config.adpcm_coefficients_dirty) {
config.adpcm_coefficients_dirty.Assign(0);
std::transform(adpcm_coeffs, adpcm_coeffs + state.adpcm_coeffs.size(),
state.adpcm_coeffs.begin(),
[](const auto& coeff) { return static_cast<s16>(coeff); });
2018-06-29 13:18:07 +02:00
LOG_TRACE(Audio_DSP, "source_id={} adpcm update", source_id);
2016-04-25 09:54:57 +02:00
}
if (config.gain_0_dirty) {
config.gain_0_dirty.Assign(0);
std::transform(config.gain[0], config.gain[0] + state.gain[0].size(), state.gain[0].begin(),
[](const auto& coeff) { return static_cast<float>(coeff); });
2018-06-29 13:18:07 +02:00
LOG_TRACE(Audio_DSP, "source_id={} gain 0 update", source_id);
2016-04-25 09:54:57 +02:00
}
if (config.gain_1_dirty) {
config.gain_1_dirty.Assign(0);
std::transform(config.gain[1], config.gain[1] + state.gain[1].size(), state.gain[1].begin(),
[](const auto& coeff) { return static_cast<float>(coeff); });
2018-06-29 13:18:07 +02:00
LOG_TRACE(Audio_DSP, "source_id={} gain 1 update", source_id);
2016-04-25 09:54:57 +02:00
}
if (config.gain_2_dirty) {
config.gain_2_dirty.Assign(0);
std::transform(config.gain[2], config.gain[2] + state.gain[2].size(), state.gain[2].begin(),
[](const auto& coeff) { return static_cast<float>(coeff); });
2018-06-29 13:18:07 +02:00
LOG_TRACE(Audio_DSP, "source_id={} gain 2 update", source_id);
2016-04-25 09:54:57 +02:00
}
if (config.filters_enabled_dirty) {
config.filters_enabled_dirty.Assign(0);
2018-09-01 15:50:57 +02:00
state.filters.Enable(static_cast<bool>(config.simple_filter_enabled),
static_cast<bool>(config.biquad_filter_enabled));
2018-06-29 13:18:07 +02:00
LOG_TRACE(Audio_DSP, "source_id={} enable_simple={} enable_biquad={}", source_id,
2018-06-29 15:56:12 +02:00
config.simple_filter_enabled.Value(), config.biquad_filter_enabled.Value());
2016-04-25 09:54:57 +02:00
}
if (config.simple_filter_dirty) {
config.simple_filter_dirty.Assign(0);
state.filters.Configure(config.simple_filter);
2018-06-29 13:18:07 +02:00
LOG_TRACE(Audio_DSP, "source_id={} simple filter update", source_id);
2016-04-25 09:54:57 +02:00
}
if (config.biquad_filter_dirty) {
config.biquad_filter_dirty.Assign(0);
state.filters.Configure(config.biquad_filter);
2018-06-29 13:18:07 +02:00
LOG_TRACE(Audio_DSP, "source_id={} biquad filter update", source_id);
2016-04-25 09:54:57 +02:00
}
if (config.interpolation_dirty) {
config.interpolation_dirty.Assign(0);
state.interpolation_mode = config.interpolation_mode;
2018-06-29 13:18:07 +02:00
LOG_TRACE(Audio_DSP, "source_id={} interpolation_mode={}", source_id,
static_cast<std::size_t>(state.interpolation_mode));
2016-04-25 09:54:57 +02:00
}
if (config.format_dirty || config.embedded_buffer_dirty) {
config.format_dirty.Assign(0);
state.format = config.format;
2018-06-29 13:18:07 +02:00
LOG_TRACE(Audio_DSP, "source_id={} format={}", source_id,
static_cast<std::size_t>(state.format));
2016-04-25 09:54:57 +02:00
}
if (config.mono_or_stereo_dirty || config.embedded_buffer_dirty) {
config.mono_or_stereo_dirty.Assign(0);
state.mono_or_stereo = config.mono_or_stereo;
2018-06-29 13:18:07 +02:00
LOG_TRACE(Audio_DSP, "source_id={} mono_or_stereo={}", source_id,
static_cast<std::size_t>(state.mono_or_stereo));
2016-04-25 09:54:57 +02:00
}
u32_dsp play_position = {};
if (config.play_position_dirty && config.play_position != 0) {
config.play_position_dirty.Assign(0);
play_position = config.play_position;
// play_position applies only to the embedded buffer, and defaults to 0 w/o a dirty bit
// This will be the starting sample for the first time the buffer is played.
}
2016-04-25 09:54:57 +02:00
if (config.embedded_buffer_dirty) {
config.embedded_buffer_dirty.Assign(0);
// HACK
// Luigi's Mansion Dark Moon configures the embedded buffer with an extremely large value
// for length, causing the Dequeue method to allocate a buffer of that size, eating up all
// of the users RAM. It appears that the game is calculating the length of the sample by
// using some value from the DSP and subtracting another value, which causes it to
// underflow. We need to investigate further into what value the game is reading from and
// fix that, but as a stop gap, we can just prevent these underflowed values from playing in
// the mean time
if (static_cast<s32>(config.length) < 0) {
LOG_ERROR(Audio_DSP,
"Skipping embedded buffer sample! Game passed in improper value for length. "
"addr {:X} length {:X}",
config.physical_address, config.length);
} else {
state.input_queue.emplace(Buffer{
config.physical_address,
config.length,
static_cast<u8>(config.adpcm_ps),
{config.adpcm_yn[0], config.adpcm_yn[1]},
static_cast<bool>(config.adpcm_dirty),
static_cast<bool>(config.is_looping),
config.buffer_id,
state.mono_or_stereo,
state.format,
false,
play_position,
false,
});
}
2018-06-29 13:18:07 +02:00
LOG_TRACE(Audio_DSP, "enqueuing embedded addr={:#010x} len={} id={} start={}",
2018-06-29 15:56:12 +02:00
config.physical_address, config.length, config.buffer_id,
static_cast<u32>(config.play_position));
}
if (config.loop_related_dirty && config.loop_related != 0) {
config.loop_related_dirty.Assign(0);
2018-06-29 13:18:07 +02:00
LOG_WARNING(Audio_DSP, "Unhandled complex loop with loop_related={:#010x}",
2018-06-29 15:56:12 +02:00
static_cast<u32>(config.loop_related));
2016-04-25 09:54:57 +02:00
}
if (config.buffer_queue_dirty) {
config.buffer_queue_dirty.Assign(0);
for (std::size_t i = 0; i < 4; i++) {
2016-04-25 09:54:57 +02:00
if (config.buffers_dirty & (1 << i)) {
const auto& b = config.buffers[i];
if (static_cast<s32>(b.length) < 0) {
LOG_ERROR(Audio_DSP,
"Skipping buffer queue sample! Game passed in improper value for "
"length. addr {:X} length {:X}",
b.physical_address, b.length);
} else {
state.input_queue.emplace(Buffer{
b.physical_address,
b.length,
static_cast<u8>(b.adpcm_ps),
{b.adpcm_yn[0], b.adpcm_yn[1]},
b.adpcm_dirty != 0,
b.is_looping != 0,
b.buffer_id,
state.mono_or_stereo,
state.format,
true,
{}, // 0 in u32_dsp
false,
});
}
2018-06-29 13:18:07 +02:00
LOG_TRACE(Audio_DSP, "enqueuing queued {} addr={:#010x} len={} id={}", i,
2018-06-29 15:56:12 +02:00
b.physical_address, b.length, b.buffer_id);
2016-04-25 09:54:57 +02:00
}
}
config.buffers_dirty = 0;
}
if (config.dirty_raw) {
2018-06-29 13:18:07 +02:00
LOG_DEBUG(Audio_DSP, "source_id={} remaining_dirty={:x}", source_id, config.dirty_raw);
2016-04-25 09:54:57 +02:00
}
config.dirty_raw = 0;
}
void Source::GenerateFrame() {
current_frame.fill({});
if (state.current_buffer.empty() && !DequeueBuffer()) {
state.enabled = false;
state.buffer_update = true;
state.current_buffer_id = 0;
return;
}
std::size_t frame_position = 0;
2016-04-25 09:54:57 +02:00
state.current_sample_number = state.next_sample_number;
while (frame_position < current_frame.size()) {
if (state.current_buffer.empty() && !DequeueBuffer()) {
break;
}
switch (state.interpolation_mode) {
case InterpolationMode::None:
AudioInterp::None(state.interp_state, state.current_buffer, state.rate_multiplier,
current_frame, frame_position);
break;
case InterpolationMode::Linear:
AudioInterp::Linear(state.interp_state, state.current_buffer, state.rate_multiplier,
current_frame, frame_position);
break;
case InterpolationMode::Polyphase:
// TODO(merry): Implement polyphase interpolation
2018-06-29 13:18:07 +02:00
LOG_DEBUG(Audio_DSP, "Polyphase interpolation unimplemented; falling back to linear");
AudioInterp::Linear(state.interp_state, state.current_buffer, state.rate_multiplier,
current_frame, frame_position);
break;
default:
UNIMPLEMENTED();
break;
}
2016-04-25 09:54:57 +02:00
}
// TODO(jroweboy): Keep track of frame_position independently so that it doesn't lose precision
// over time
state.next_sample_number += static_cast<u32>(frame_position * state.rate_multiplier);
2016-04-25 09:54:57 +02:00
state.filters.ProcessFrame(current_frame);
}
bool Source::DequeueBuffer() {
ASSERT_MSG(state.current_buffer.empty(),
"Shouldn't dequeue; we still have data in current_buffer");
2016-04-25 09:54:57 +02:00
if (state.input_queue.empty())
return false;
Buffer buf = state.input_queue.top();
state.input_queue.pop();
2016-04-25 09:54:57 +02:00
if (buf.adpcm_dirty) {
state.adpcm_state.yn1 = buf.adpcm_yn[0];
state.adpcm_state.yn2 = buf.adpcm_yn[1];
}
// This physical address masking occurs due to how the DSP DMA hardware is configured by the
// firmware.
const u8* const memory = memory_system->GetPhysicalPointer(buf.physical_address & 0xFFFFFFFC);
2016-04-25 09:54:57 +02:00
if (memory) {
const unsigned num_channels = buf.mono_or_stereo == MonoOrStereo::Stereo ? 2 : 1;
switch (buf.format) {
case Format::PCM8:
state.current_buffer = Codec::DecodePCM8(num_channels, memory, buf.length);
break;
case Format::PCM16:
state.current_buffer = Codec::DecodePCM16(num_channels, memory, buf.length);
break;
case Format::ADPCM:
DEBUG_ASSERT(num_channels == 1);
state.current_buffer =
Codec::DecodeADPCM(memory, buf.length, state.adpcm_coeffs, state.adpcm_state);
2016-04-25 09:54:57 +02:00
break;
default:
UNIMPLEMENTED();
break;
}
} else {
2018-06-29 13:18:07 +02:00
LOG_WARNING(Audio_DSP,
2018-06-29 15:56:12 +02:00
"source_id={} buffer_id={} length={}: Invalid physical address {:#010x}",
source_id, buf.buffer_id, buf.length, buf.physical_address);
2016-04-25 09:54:57 +02:00
state.current_buffer.clear();
return true;
}
// the first playthrough starts at play_position, loops start at the beginning of the buffer
state.current_sample_number = (!buf.has_played) ? buf.play_position : 0;
state.next_sample_number = state.current_sample_number;
2016-04-25 09:54:57 +02:00
state.current_buffer_id = buf.buffer_id;
state.buffer_update = buf.from_queue && !buf.has_played;
if (buf.is_looping) {
buf.has_played = true;
state.input_queue.push(buf);
}
2016-04-25 09:54:57 +02:00
2018-06-29 13:18:07 +02:00
LOG_TRACE(Audio_DSP, "source_id={} buffer_id={} from_queue={} current_buffer.size()={}",
2018-06-29 15:56:12 +02:00
source_id, buf.buffer_id, buf.from_queue, state.current_buffer.size());
2016-04-25 09:54:57 +02:00
return true;
}
SourceStatus::Status Source::GetCurrentStatus() {
SourceStatus::Status ret;
// Applications depend on the correct emulation of
// current_buffer_id_dirty and current_buffer_id to synchronise
// audio with video.
ret.is_enabled = state.enabled;
ret.current_buffer_id_dirty = state.buffer_update ? 1 : 0;
state.buffer_update = false;
ret.current_buffer_id = state.current_buffer_id;
ret.buffer_position = state.current_sample_number;
ret.sync = state.sync;
return ret;
}
2019-02-18 05:41:48 +01:00
} // namespace AudioCore::HLE