Updated AOT Recompiler to latest Citra, added 64bit support.

Signed-off-by: Patrick Martin <patrick.martin.r@gmail.com>
This commit is contained in:
Patrick Martin 2015-12-19 16:05:12 -08:00
parent bbb96a392d
commit 4e7234a1c4
47 changed files with 2848 additions and 9 deletions

View file

@ -41,6 +41,14 @@ option(CITRA_USE_BUNDLED_GLFW "Download bundled GLFW binaries" OFF)
option(ENABLE_QT "Enable the Qt frontend" ON)
option(CITRA_USE_BUNDLED_QT "Download bundled Qt binaries" OFF)
option(CITRA_FORCE_QT4 "Use Qt4 even if Qt5 is available." OFF)
option(ENABLE_BINARY_TRANSLATION "Enable binary translation. Requires LLVM" OFF)
if(ENABLE_BINARY_TRANSLATION)
add_definitions(-DENABLE_BINARY_TRANSLATION)
find_package(LLVM REQUIRED CONFIG)
include_directories(${LLVM_INCLUDE_DIRS})
add_definitions(${LLVM_DEFINITIONS})
llvm_map_components_to_libnames(llvm_libs Core Support native ExecutionEngine MCJIT BitWriter ipo)
endif()
if(NOT EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/.git/hooks/pre-commit)
message(STATUS "Copying pre-commit hook")

View file

@ -10,3 +10,6 @@ endif()
if (ENABLE_QT)
add_subdirectory(citra_qt)
endif()
if(ENABLE_BINARY_TRANSLATION)
add_subdirectory(binary_translation)
endif()

View file

@ -0,0 +1,160 @@
#include "ARMFuncs.h"
#include "InstructionBlock.h"
#include <functional>
ARMFuncs::ShiftTN ARMFuncs::DecodeImmShift(InstructionBlock* instruction, u32 type, u32 imm5)
{
auto ir_builder = instruction->IrBuilder();
switch (type)
{
case 0: return{ SRType::LSL, ir_builder->getInt32(imm5) };
case 1: return{ SRType::LSR, ir_builder->getInt32(imm5 ? imm5 : 32) };
case 2: return{ SRType::ASR, ir_builder->getInt32(imm5 ? imm5 : 32) };
case 3:
if (imm5)
return{ SRType::ROR, ir_builder->getInt32(imm5) };
else
return{ SRType::RRX, ir_builder->getInt32(1) };
default: assert(false, "Invalid shift type");
}
}
llvm::Value* ARMFuncs::Shift(InstructionBlock* instruction, llvm::Value* value, SRType type, llvm::Value* amount, llvm::Value* carry_in)
{
return Shift_C(instruction, value, type, amount, carry_in).result;
}
ARMFuncs::ResultCarry ARMFuncs::Shift_C(InstructionBlock* instruction, llvm::Value* value, SRType type, llvm::Value* amount, llvm::Value* carry_in)
{
auto ir_builder = instruction->IrBuilder();
auto amount_zero = ir_builder->CreateICmpEQ(amount, ir_builder->getInt32(0));
ResultCarry result_amount_not_zero = {};
switch (type)
{
case SRType::LSL: result_amount_not_zero = LSL_C(instruction, value, amount); break;
case SRType::LSR: result_amount_not_zero = LSR_C(instruction, value, amount); break;
case SRType::ASR: result_amount_not_zero = ASR_C(instruction, value, amount); break;
case SRType::ROR: result_amount_not_zero = ROR_C(instruction, value, amount); break;
case SRType::RRX: result_amount_not_zero = RRX_C(instruction, value, carry_in); break;
default: assert(false, "Invalid shift type");
}
auto result = ir_builder->CreateSelect(amount_zero, value, result_amount_not_zero.result);
auto carry = ir_builder->CreateSelect(amount_zero, carry_in, result_amount_not_zero.carry);
return{ result, carry };
}
// Generates code for LSL, LSR that checks for 0 shift
llvm::Value* ShiftZeroCheck(
InstructionBlock *instruction, llvm::Value* x, llvm::Value* shift,
std::function<ARMFuncs::ResultCarry(InstructionBlock *, llvm::Value*, llvm::Value*)> non_zero_function)
{
auto ir_builder = instruction->IrBuilder();
auto amount_zero = ir_builder->CreateICmpEQ(shift, ir_builder->getInt32(0));
auto result_amount_not_zero = non_zero_function(instruction, x, shift);
return ir_builder->CreateSelect(amount_zero, x, result_amount_not_zero.result);
}
ARMFuncs::ResultCarry ARMFuncs::LSL_C(InstructionBlock* instruction, llvm::Value* x, llvm::Value* shift)
{
auto ir_builder = instruction->IrBuilder();
auto N = ir_builder->getInt32(32);
auto result = ir_builder->CreateShl(x, shift);
auto carry = ir_builder->CreateTrunc(ir_builder->CreateLShr(x, ir_builder->CreateSub(N, shift, "", true, true)), ir_builder->getInt1Ty());
return{ result, carry };
}
llvm::Value* ARMFuncs::LSL(InstructionBlock* instruction, llvm::Value* x, llvm::Value* shift)
{
return ShiftZeroCheck(instruction, x, shift, &ARMFuncs::LSL_C);
}
ARMFuncs::ResultCarry ARMFuncs::LSR_C(InstructionBlock* instruction, llvm::Value* x, llvm::Value* shift)
{
auto ir_builder = instruction->IrBuilder();
auto one = ir_builder->getInt32(1);
auto result = ir_builder->CreateLShr(x, shift);
auto carry = ir_builder->CreateTrunc(ir_builder->CreateLShr(x, ir_builder->CreateSub(shift, one, "", true, true)), ir_builder->getInt1Ty());
return{ result, carry };
}
llvm::Value* ARMFuncs::LSR(InstructionBlock* instruction, llvm::Value* x, llvm::Value* shift)
{
return ShiftZeroCheck(instruction, x, shift, &ARMFuncs::LSR_C);
}
ARMFuncs::ResultCarry ARMFuncs::ASR_C(InstructionBlock* instruction, llvm::Value* x, llvm::Value* shift)
{
auto ir_builder = instruction->IrBuilder();
auto one = ir_builder->getInt32(1);
auto result = ir_builder->CreateAShr(x, shift);
auto carry = ir_builder->CreateTrunc(ir_builder->CreateLShr(x, ir_builder->CreateSub(shift, one, "", true, true)), ir_builder->getInt1Ty());
return{ result, carry };
}
ARMFuncs::ResultCarry ARMFuncs::ROR_C(InstructionBlock* instruction, llvm::Value* x, llvm::Value* shift)
{
auto ir_builder = instruction->IrBuilder();
auto N = ir_builder->getInt32(32);
auto m = ir_builder->CreateURem(shift, N);
auto result = ir_builder->CreateOr(LSR(instruction, x, m), LSL(instruction, x, ir_builder->CreateSub(N, m)));
auto carry = ir_builder->CreateTrunc(ir_builder->CreateLShr(result, ir_builder->getInt32(31)), ir_builder->getInt1Ty());
return{ result, carry };
}
ARMFuncs::ResultCarry ARMFuncs::RRX_C(InstructionBlock* instruction, llvm::Value* x, llvm::Value* carry_in)
{
auto ir_builder = instruction->IrBuilder();
auto result = ir_builder->CreateLShr(x, 1);
result = ir_builder->CreateOr(result, ir_builder->CreateShl(ir_builder->CreateZExt(carry_in, ir_builder->getInt32Ty()), 31));
auto carry = ir_builder->CreateTrunc(x, ir_builder->getInt1Ty());
return{ result, carry };
}
llvm::Value* ARMFuncs::ARMExpandImm(InstructionBlock* instruction, u32 imm12)
{
auto ir_builder = instruction->IrBuilder();
// Manual says carry in does not affect the result, so use undef
return ARMExpandImm_C(instruction, imm12, llvm::UndefValue::get(ir_builder->getInt1Ty())).result;
}
ARMFuncs::ResultCarry ARMFuncs::ARMExpandImm_C(InstructionBlock *instruction, u32 imm12, llvm::Value* carry)
{
auto ir_builder = instruction->IrBuilder();
auto value = ir_builder->getInt32(imm12 & 0xFF);
auto shift = ir_builder->getInt32(2 * (imm12 >> 8));
return Shift_C(instruction, value, SRType::ROR, shift, carry);
}
// AddWithCarry from armsupp.cpp
ARMFuncs::ResultCarryOverflow ARMFuncs::AddWithCarry(InstructionBlock* instruction, llvm::Value* x, llvm::Value* y, llvm::Value* carry_in)
{
auto ir_builder = instruction->IrBuilder();
auto xu64 = ir_builder->CreateZExt(x, ir_builder->getInt64Ty());
auto xs64 = ir_builder->CreateSExt(x, ir_builder->getInt64Ty());
auto yu64 = ir_builder->CreateZExt(y, ir_builder->getInt64Ty());
auto ys64 = ir_builder->CreateSExt(y, ir_builder->getInt64Ty());
auto c64 = ir_builder->CreateZExt(carry_in, ir_builder->getInt64Ty());
auto unsignedSum = ir_builder->CreateAdd(ir_builder->CreateAdd(xu64, yu64), c64);
auto singedSum = ir_builder->CreateAdd(ir_builder->CreateAdd(xs64, ys64), c64);
auto result32 = ir_builder->CreateTrunc(unsignedSum, ir_builder->getInt32Ty());
auto resultU64 = ir_builder->CreateZExt(result32, ir_builder->getInt64Ty());
auto resultS64 = ir_builder->CreateSExt(result32, ir_builder->getInt64Ty());
auto carry = ir_builder->CreateICmpNE(resultU64, unsignedSum);
auto overflow = ir_builder->CreateICmpNE(resultS64, singedSum);
return{ result32, carry, overflow };
}

View file

@ -0,0 +1,51 @@
#include <common/common_types.h>
/*
* Functions from the manual,
* A8.4.3 Pseudocode details of instruction-specified shifts and rotates
* A2.2.1 Integer arithmetic
* A5.2.4 Modified immediate constants in ARM instructions
*/
class InstructionBlock;
namespace llvm
{
class Value;
}
class ARMFuncs
{
public:
enum class SRType { LSL, LSR, ASR, RRX, ROR };
struct ShiftTN
{
SRType type;
llvm::Value *amount;
};
struct ResultCarry
{
llvm::Value *result, *carry;
};
struct ResultCarryOverflow
{
llvm::Value *result, *carry, *overflow;
};
static ShiftTN DecodeImmShift(InstructionBlock *instruction, u32 type, u32 imm5);
static llvm::Value *Shift(InstructionBlock *instruction, llvm::Value *value, SRType type, llvm::Value *amount, llvm::Value *carry_in);
static ResultCarry Shift_C(InstructionBlock *instruction, llvm::Value *value, SRType type, llvm::Value *amount, llvm::Value *carry_in);
static ResultCarry LSL_C(InstructionBlock *instruction, llvm::Value *x, llvm::Value *shift);
static llvm::Value *LSL(InstructionBlock *instruction, llvm::Value *x, llvm::Value *shift);
static ResultCarry LSR_C(InstructionBlock *instruction, llvm::Value *x, llvm::Value *shift);
static llvm::Value *LSR(InstructionBlock *instruction, llvm::Value *x, llvm::Value *shift);
static ResultCarry ASR_C(InstructionBlock *instruction, llvm::Value *x, llvm::Value *shift);
static ResultCarry ROR_C(InstructionBlock *instruction, llvm::Value *x, llvm::Value *shift);
static ResultCarry RRX_C(InstructionBlock *instruction, llvm::Value *x, llvm::Value *carry_in);
static llvm::Value *ARMExpandImm(InstructionBlock *instruction, u32 imm12);
static ResultCarry ARMExpandImm_C(InstructionBlock *instruction, u32 imm12, llvm::Value *carry);
static ResultCarryOverflow AddWithCarry(InstructionBlock *instruction, llvm::Value *x, llvm::Value *y, llvm::Value *carry_in);
};

View file

@ -0,0 +1,22 @@
#pragma once
#include "common/logging/log.h"
#include <cmath>
// Used for debugging
struct BinarySearch
{
size_t min;
size_t mid;
size_t max;
BinarySearch(size_t max) : min(0), mid(max / 2), max(max) { }
BinarySearch(size_t min, size_t max) : min(min), mid((min + max) / 2), max(max) { }
BinarySearch l() const { return BinarySearch(min, mid); }
BinarySearch r() const { return BinarySearch(mid, max); }
operator size_t()
{
LOG_DEBUG(BinaryTranslator, "BinarySearch: %x: %x - %x (%x, %d)", mid, max, min, max - min, (size_t)std::log2(max - min));
return mid;
}
operator int() { return static_cast<size_t>(*this); }
};

View file

@ -0,0 +1,105 @@
#include "BlockColors.h"
#include <stack>
#include "InstructionBlock.h"
#include <llvm/IR/Function.h>
#include "common/logging/log.h"
using namespace llvm;
BlockColors::BlockColors(ModuleGen* module) : module(module)
{
auto ir_builder = module->IrBuilder();
function_type = FunctionType::get(ir_builder->getVoidTy(), ir_builder->getInt32Ty(), false);
}
BlockColors::~BlockColors()
{
}
void BlockColors::AddBlock(InstructionBlock* block)
{
if (block->HasColor()) return;
std::stack<InstructionBlock *> current_color_stack;
current_color_stack.push(block);
auto color = colors.size();
colors.push_back({ color });
while (current_color_stack.size())
{
auto item = current_color_stack.top();
current_color_stack.pop();
item->SetColor(color);
colors[color].instructions.push_back(item);
for (auto next : item->GetNexts())
{
if (next->HasColor()) assert(next->GetColor() == color);
else current_color_stack.push(next);
}
for (auto prev : item->GetPrevs())
{
if (prev->HasColor()) assert(prev->GetColor() == color);
else current_color_stack.push(prev);
}
}
}
void BlockColors::GenerateFunctions()
{
auto ir_builder = module->IrBuilder();
LOG_INFO(BinaryTranslator, "%x block colors", colors.size());
for (auto &color : colors)
{
auto function = Function::Create(function_type, GlobalValue::PrivateLinkage,
"ColorFunction", module->Module());
color.function = function;
auto index = &function->getArgumentList().front();
auto entry_basic_block = BasicBlock::Create(getGlobalContext(), "Entry", function);
auto default_case_basic_block = BasicBlock::Create(getGlobalContext(), "Default", function);
ir_builder->SetInsertPoint(default_case_basic_block);
ir_builder->CreateUnreachable();
ir_builder->SetInsertPoint(entry_basic_block);
auto switch_instruction = ir_builder->CreateSwitch(index, default_case_basic_block, color.instructions.size());
for (size_t i = 0; i < color.instructions.size(); ++i)
{
switch_instruction->addCase(ir_builder->getInt32(i), color.instructions[i]->GetEntryBasicBlock());
AddBasicBlocksToFunction(function, color.instructions[i]->GetEntryBasicBlock());
}
}
}
void BlockColors::AddBasicBlocksToFunction(Function* function, BasicBlock* basic_block)
{
if (basic_block->getParent())
{
assert(basic_block->getParent() == function);
return;
}
std::stack<BasicBlock *> basic_blocks;
basic_blocks.push(basic_block);
while (basic_blocks.size())
{
auto top = basic_blocks.top();
basic_blocks.pop();
top->insertInto(function);
auto terminator = top->getTerminator();
for (auto i = 0; i < terminator->getNumSuccessors(); ++i)
{
auto next = terminator->getSuccessor(i);
if (next->getParent())
{
assert(next->getParent() == function);
continue;
}
basic_blocks.push(next);
}
}
}

View file

@ -0,0 +1,50 @@
#include <vector>
namespace llvm
{
class BasicBlock;
class Function;
class FunctionType;
}
class InstructionBlock;
class ModuleGen;
/*
Responsible to partition the blocks by connectivity, each disjoined graph gets a color
And to generate a function for each color
*/
class BlockColors
{
public:
BlockColors(ModuleGen *module);
~BlockColors();
void AddBlock(InstructionBlock *block);
// Generates a function for each color
void GenerateFunctions();
llvm::FunctionType *GetFunctionType() { return function_type; }
size_t GetColorCount() const { return colors.size(); }
size_t GetColorInstructionCount(size_t color) const { return colors[color].instructions.size(); }
InstructionBlock *GetColorInstruction(size_t color, size_t index) { return colors[color].instructions[index]; }
llvm::Function *GetColorFunction(size_t color) { return colors[color].function; }
private:
ModuleGen *module;
// void ColorFunction(int i)
// Runs the code for color->instructions[i]
llvm::FunctionType *function_type;
void AddBasicBlocksToFunction(llvm::Function *function, llvm::BasicBlock *basic_block);
struct Color
{
size_t color;
std::vector<InstructionBlock *> instructions;
llvm::Function *function;
};
std::vector<Color> colors;
};

View file

@ -0,0 +1,46 @@
set(SRCS
main.cpp
CodeGen.cpp
ModuleGen.cpp
Disassembler.cpp
InstructionBlock.cpp
MachineState.cpp
TBAA.cpp
ARMFuncs.cpp
BlockColors.cpp
Instructions/Instruction.cpp
Instructions/MovShift.cpp
Instructions/Branch.cpp
Instructions/Arithmetic.cpp
Instructions/Ldr.cpp
Instructions/Str.cpp
)
set(HEADERS
CodeGen.h
ModuleGen.h
Disassembler.h
InstructionBlock.h
MachineState.h
TBAA.h
BinarySearch.h
ARMFuncs.h
BlockColors.h
Instructions/Types.h
Instructions/Types.h
Instructions/Instruction.h
Instructions/MovShift.h
Instructions/Branch.h
Instructions/Arithmetic.h
Instructions/Ldr.h
Instructions/Str.h
)
create_directory_groups(${SRCS} ${HEADERS})
include_directories(.)
add_executable(binary_translate ${SRCS} ${HEADERS})
target_link_libraries(binary_translate ${llvm_libs})
target_link_libraries(binary_translate core common video_core)
target_link_libraries(binary_translate inih)
target_link_libraries(binary_translate ${PLATFORM_LIBRARIES})

View file

@ -0,0 +1,170 @@
#include "CodeGen.h"
#include "ModuleGen.h"
#include "core/loader/loader.h"
#include "common/logging/log.h"
#include <llvm/Support/TargetSelect.h>
#include <llvm/Support/Host.h>
#include <llvm/Target/TargetSubtargetInfo.h>
#include <llvm/ExecutionEngine/ExecutionEngine.h>
#include <llvm/IR/LLVMContext.h>
#include <llvm/Support/raw_os_ostream.h>
#include <llvm/Support/raw_ostream.h>
#include <llvm/IR/LegacyPassManager.h>
#include <llvm/IR/Verifier.h>
#include <llvm/Analysis/TargetLibraryInfo.h>
#include <llvm/Transforms/IPO/PassManagerBuilder.h>
#include <llvm/Transforms/IPO.h>
#include <iostream>
using namespace llvm;
CodeGen::CodeGen(const char* output_object_filename, const char* output_debug_filename, bool verify)
: output_object_filename(output_object_filename),
output_debug_filename(output_debug_filename),
verify(verify)
{
}
CodeGen::~CodeGen()
{
}
void CodeGen::Run()
{
if (!Loader::ROMCodeStart)
{
LOG_CRITICAL(BinaryTranslator, "No information from the loader about ROM file.");
return;
}
InitializeLLVM();
GenerateModule();
GenerateDebugFiles();
if (!Verify()) return;
OptimizeAndGenerate();
}
void CodeGen::InitializeLLVM()
{
InitializeNativeTarget();
InitializeNativeTargetAsmPrinter();
auto triple_string = sys::getProcessTriple();
#ifdef _WIN32
// LLVM doesn't know how to load coff files
// It can handle elf files in every platform
triple_string += "-elf";
#endif
triple = llvm::make_unique<Triple>(triple_string);
// This engine builder is needed to get the target machine. It requires a module
// but takes ownership of it so the main module cannot be passed here.
EngineBuilder engine_builder(make_unique<Module>("", getGlobalContext()));
target_machine.reset(engine_builder.selectTarget(*triple, "", "", SmallVector<std::string, 0>()));
module = make_unique<Module>("Module", getGlobalContext());
module->setTargetTriple(triple_string);
}
void CodeGen::GenerateModule()
{
moduleGenerator = std::make_unique<ModuleGen>(module.get(), verify);
moduleGenerator->Run();
}
void CodeGen::GenerateDebugFiles()
{
if (!output_debug_filename) return;
LOG_INFO(BinaryTranslator, "Writing debug file");
std::ofstream file(output_debug_filename);
if (!file)
{
LOG_ERROR(BinaryTranslator, "Cannot create debug file: %s", output_debug_filename);
return;
}
raw_os_ostream stream(file);
module->print(stream, nullptr);
stream.flush();
file.close();
LOG_INFO(BinaryTranslator, "Done");
}
bool CodeGen::Verify()
{
LOG_INFO(BinaryTranslator, "Verifying");
raw_os_ostream os(std::cout);
if (verifyModule(*module, &os))
{
LOG_CRITICAL(BinaryTranslator, "Verify failed");
return false;
}
LOG_INFO(BinaryTranslator, "Done");
return true;
}
void CodeGen::OptimizeAndGenerate()
{
/*
* Taken from opt for O3
*/
PassManagerBuilder pass_manager_builder;
legacy::FunctionPassManager function_pass_manager(module.get());
legacy::PassManager pass_manager;
module->setDataLayout(*target_machine->getDataLayout());
pass_manager.add(createVerifierPass());
pass_manager.add(new TargetLibraryInfoWrapperPass(*triple.get()));
pass_manager_builder.OptLevel = 3;
pass_manager_builder.SizeLevel = 0;
pass_manager_builder.Inliner = createFunctionInliningPass(3, 0);
pass_manager_builder.LoopVectorize = true;
pass_manager_builder.SLPVectorize = true;
pass_manager_builder.populateFunctionPassManager(function_pass_manager);
pass_manager_builder.OptLevel = 1;
pass_manager_builder.SizeLevel = 0;
pass_manager_builder.LoopVectorize = false;
pass_manager_builder.SLPVectorize = false;
pass_manager_builder.populateModulePassManager(pass_manager);
LOG_INFO(BinaryTranslator, "Optimizing functions");
function_pass_manager.doInitialization();
for (auto &function : *module)
function_pass_manager.run(function);
function_pass_manager.doFinalization();
LOG_INFO(BinaryTranslator, "Done");
pass_manager.add(createVerifierPass());
MCContext *context;
std::ofstream file(output_object_filename, std::ios::binary);
if (!file)
{
LOG_CRITICAL(BinaryTranslator, "Cannot create object file: %s", output_object_filename);
return;
}
raw_os_ostream fstream(file);
buffer_ostream* stream = new buffer_ostream(fstream);
if (target_machine->addPassesToEmitMC(pass_manager, context, *stream, false))
{
LOG_CRITICAL(BinaryTranslator, "Target does not support MC emission!");
return;
}
LOG_INFO(BinaryTranslator, "Generating code");
pass_manager.run(*module);
stream->flush();
delete stream;
fstream.flush();
file.close();
LOG_INFO(BinaryTranslator, "Done");
}

View file

@ -0,0 +1,37 @@
#include <memory>
#include <llvm/IR/IRBuilder.h>
namespace llvm
{
class TargetMachine;
class Module;
}
class ModuleGen;
/*
* Holds alls the basic llvm structures
*/
class CodeGen
{
public:
CodeGen(const char *output_object_filename, const char *output_debug_filename, bool verify);
~CodeGen();
void Run();
void InitializeLLVM();
void GenerateModule();
void GenerateDebugFiles();
bool Verify();
void OptimizeAndGenerate();
private:
const char *output_object_filename;
const char *output_debug_filename;
bool verify;
std::unique_ptr<ModuleGen> moduleGenerator;
std::unique_ptr<llvm::Triple> triple;
std::unique_ptr<llvm::TargetMachine> target_machine;
std::unique_ptr<llvm::Module> module;
};

View file

@ -0,0 +1,23 @@
#include "Disassembler.h"
#include "Instructions/Instruction.h"
#include <vector>
std::vector<RegisterInstructionBase::CreateFunctionType> g_read_functions;
RegisterInstructionBase::RegisterInstructionBase(CreateFunctionType create_function)
{
g_read_functions.push_back(create_function);
}
std::unique_ptr<Instruction> Disassembler::Disassemble(u32 instruction, u32 address)
{
for (auto read_function : g_read_functions)
{
auto result = read_function(instruction, address);
if (result != nullptr)
{
return std::unique_ptr<Instruction>(result);
}
}
return nullptr;
}

View file

@ -0,0 +1,43 @@
#include "common/common_types.h"
#include <memory>
class Instruction;
class Disassembler
{
public:
/*
* Returns the instruction at address or null if unknown or not translatable
* address is used for PC relative operations
*/
static std::unique_ptr<Instruction> Disassemble(u32 instruction, u32 address);
};
class RegisterInstructionBase
{
public:
typedef Instruction *(*CreateFunctionType)(u32 instruction, u32 address);
RegisterInstructionBase(CreateFunctionType create_function);
};
/*
* Instantiate this class in a source file to register instruction in the disassembler
*/
template<typename DerivedInstruction>
class RegisterInstruction : RegisterInstructionBase
{
public:
RegisterInstruction() : RegisterInstructionBase(&RegisterInstruction::Create) {}
private:
static Instruction *Create(u32 instruction, u32 address)
{
auto result = new DerivedInstruction();
if (!result->Read(instruction, address))
{
delete result;
return nullptr;
}
return result;
}
};

View file

@ -0,0 +1,60 @@
#include "InstructionBlock.h"
#include "ModuleGen.h"
#include "Instructions/Instruction.h"
#include <sstream>
#include <iomanip>
#include "MachineState.h"
InstructionBlock::InstructionBlock(ModuleGen* module, Instruction* instruction)
: module(module),
instruction(std::unique_ptr<Instruction>(instruction))
{
std::stringstream ss;
ss << std::hex << std::setfill('0') << std::setw(8) << instruction->Address() << "_";
address_string = ss.str();
}
InstructionBlock::~InstructionBlock()
{
}
void InstructionBlock::GenerateEntryBlock()
{
entry_basic_block = CreateBasicBlock("Entry");
}
void InstructionBlock::GenerateCode()
{
auto ir_builder = Module()->IrBuilder();
ir_builder->SetInsertPoint(entry_basic_block);
module->GenerateIncInstructionCount();
instruction->GenerateCode(this);
}
llvm::Value *InstructionBlock::Read(Register reg)
{
return module->Machine()->ReadRegiser(reg,true);
}
llvm::Value *InstructionBlock::Write(Register reg, llvm::Value *value)
{
return module->Machine()->WriteRegiser(reg, value);
}
llvm::BasicBlock *InstructionBlock::CreateBasicBlock(const char *name)
{
return llvm::BasicBlock::Create(llvm::getGlobalContext(), address_string + name);
}
void InstructionBlock::Link(InstructionBlock* prev, InstructionBlock* next)
{
prev->nexts.push_back(next);
next->prevs.push_back(prev);
}
u32 InstructionBlock::Address() const
{
return instruction->Address();
}

View file

@ -0,0 +1,85 @@
#include <memory>
#include <string>
#include <common/common_types.h>
#include <llvm/IR/IRBuilder.h>
#include "ModuleGen.h"
namespace llvm
{
class Value;
class BasicBlock;
}
class Instruction;
enum class Register;
/*
* An instruction blocks
* Holds the entry and exit points for an instruction
* Responsible to generate the code
*/
class InstructionBlock
{
public:
InstructionBlock(ModuleGen *module, Instruction *instruction);
~InstructionBlock();
/*
* Generates the basic block of the instruction
*/
void GenerateEntryBlock();
/*
* Generates the code for the instruction
*/
void GenerateCode();
/*
* Generates code to read the register
*/
llvm::Value *Read(Register reg);
/*
* Generates code to write the value
* Returns the write instruction = written value
*/
llvm::Value *Write(Register reg, llvm::Value *value);
/*
* Creates a basic block for use by instructions
*/
llvm::BasicBlock *CreateBasicBlock(const char *name);
/*
* Links two instructions, adding to prev and next lists
*/
static void Link(InstructionBlock *prev, InstructionBlock *next);
u32 Address() const;
ModuleGen *Module() { return module; }
llvm::IRBuilder<> *IrBuilder() { return module->IrBuilder(); }
llvm::BasicBlock *GetEntryBasicBlock() { return entry_basic_block; }
bool HasColor() const { return has_color; }
void SetColor(size_t color) { this->color = color; has_color = true; }
size_t GetColor() const { return color; }
std::list<InstructionBlock *> GetNexts() const { return nexts; }
std::list<InstructionBlock *> GetPrevs() const { return prevs; }
private:
// Textual representation of the address
// Used to generate names
std::string address_string;
ModuleGen *module;
std::unique_ptr<Instruction> instruction;
// The block at the entry to instruction
llvm::BasicBlock *entry_basic_block;
bool has_color = false;
size_t color;
std::list<InstructionBlock *> nexts;
std::list<InstructionBlock *> prevs;
};

View file

@ -0,0 +1,124 @@
#include "Arithmetic.h"
#include "Disassembler.h"
#include <binary_translation/ARMFuncs.h>
#include <binary_translation/InstructionBlock.h>
static RegisterInstruction<Arithmetic> register_instruction;
bool IsSupported(Arithmetic::Op op)
{
switch (op)
{
case Arithmetic::Op::BitwiseAnd: return true;
case Arithmetic::Op::BitwiseXor: return true;
case Arithmetic::Op::Subtract: return true;
case Arithmetic::Op::RevSubtract: return true;
case Arithmetic::Op::Add: return true;
case Arithmetic::Op::AddWithCarry: return true;
case Arithmetic::Op::SubtractWithCarry: return true;
case Arithmetic::Op::ReverseSubtractWithCarry: return true;
case Arithmetic::Op::BitwiseOr: return true;
case Arithmetic::Op::MoveAndShifts: return false; // Handled in MovShift.cpp
case Arithmetic::Op::BitwiseBitClear: return true;
case Arithmetic::Op::BitwiseNot: return false; // MVN
default: return false;
}
}
bool IsBitwise(Arithmetic::Op op)
{
return op == Arithmetic::Op::BitwiseAnd ||
op == Arithmetic::Op::BitwiseXor ||
op == Arithmetic::Op::BitwiseOr ||
op == Arithmetic::Op::BitwiseBitClear;
}
bool Arithmetic::Decode()
{
if (ReadFields({ CondDef(), FieldDef<3>(0), FieldDef<4>(&op), FieldDef<1>(&set_flags), FieldDef<4>(&rn),
FieldDef<4>(&rd), FieldDef<5>(&imm5), FieldDef<2>(&type), FieldDef<1>(0), FieldDef<4>(&rm)}))
{
form = Form::Register;
if (rd == Register::PC && set_flags) return false; // SEE SUBS PC, LR and related instructions;
if (rn == Register::PC) return false;
if (rm == Register::PC) return false;
return IsSupported(op);
}
if (ReadFields({ CondDef(), FieldDef<3>(1), FieldDef<4>(&op), FieldDef<1>(&set_flags), FieldDef<4>(&rn),
FieldDef<4>(&rd), FieldDef<12>(&imm12) }))
{
form = Form::Immediate;
if (rd == Register::PC && set_flags) return false; // SEE SUBS PC, LR and related instructions;
if (rn == Register::PC) return false;
return IsSupported(op);
}
return false;
}
void Arithmetic::GenerateInstructionCode(InstructionBlock* instruction_block)
{
auto ir_builder = instruction_block->Module()->IrBuilder();
llvm::Value *left, *right, *carry_in;
ARMFuncs::ResultCarryOverflow result = { nullptr, nullptr, nullptr };
auto bitwise = IsBitwise(op);
carry_in = instruction_block->Read(Register::C);
left = instruction_block->Read(rn);
if (form == Form::Register)
{
if (bitwise)
{
auto shift_tn = ARMFuncs::DecodeImmShift(instruction_block, type, imm5);
auto shifted_carry = ARMFuncs::Shift_C(instruction_block, instruction_block->Read(rm), shift_tn.type, shift_tn.amount, carry_in);
right = shifted_carry.result;
result.carry = shifted_carry.carry;
}
else
{
auto shift_tn = ARMFuncs::DecodeImmShift(instruction_block, type, imm5);
right = ARMFuncs::Shift(instruction_block, instruction_block->Read(rm), shift_tn.type, shift_tn.amount, carry_in);
}
}
else
{
if (bitwise)
{
auto imm32_carry = ARMFuncs::ARMExpandImm_C(instruction_block, imm12, carry_in);
right = imm32_carry.result;
result.carry = imm32_carry.carry;
}
else
{
right = ARMFuncs::ARMExpandImm(instruction_block, imm12);
}
}
switch (op)
{
case Op::BitwiseAnd: result.result = ir_builder->CreateAnd(left, right); break;
case Op::BitwiseXor: result.result = ir_builder->CreateXor(left, right); break;
case Op::Subtract: result = ARMFuncs::AddWithCarry(instruction_block, left, ir_builder->CreateNot(right), ir_builder->getInt32(1)); break;
case Op::RevSubtract: result = ARMFuncs::AddWithCarry(instruction_block, ir_builder->CreateNot(left), right, ir_builder->getInt32(1)); break;
case Op::Add: result = ARMFuncs::AddWithCarry(instruction_block, left, right, ir_builder->getInt32(0)); break;
case Op::AddWithCarry: result = ARMFuncs::AddWithCarry(instruction_block, left, right, carry_in); break;
case Op::SubtractWithCarry: result = ARMFuncs::AddWithCarry(instruction_block, left, ir_builder->CreateNot(right), carry_in); break;
case Op::ReverseSubtractWithCarry: result = ARMFuncs::AddWithCarry(instruction_block, ir_builder->CreateNot(left), right, carry_in); break;
case Op::BitwiseOr: result.result = ir_builder->CreateOr(left, right); break;
case Op::BitwiseBitClear: result.result = ir_builder->CreateAnd(left, ir_builder->CreateNot(right)); break;
default: break;
}
instruction_block->Write(rd, result.result);
if (set_flags)
{
instruction_block->Write(Register::N, ir_builder->CreateICmpSLT(result.result, ir_builder->getInt32(0)));
instruction_block->Write(Register::Z, ir_builder->CreateICmpEQ(result.result, ir_builder->getInt32(0)));
instruction_block->Write(Register::C, result.carry);
if (result.overflow)
instruction_block->Write(Register::V, result.overflow);
}
}

View file

@ -0,0 +1,35 @@
#include "Instruction.h"
#include "Types.h"
/*
* Data processing instructions
* ARMv7-A 5.2.1 (register), 5.2.2 (register-shifted register), 5.2.3 (immediate)
*/
class Arithmetic : public Instruction
{
public:
enum class Form
{
Register, RegisterShiftedRegister, Immediate
};
enum class Op
{
BitwiseAnd = 0, BitwiseXor, Subtract, RevSubtract, Add, AddWithCarry, SubtractWithCarry, ReverseSubtractWithCarry,
// Compare, Test, Misc
BitwiseOr = 12, MoveAndShifts, BitwiseBitClear, BitwiseNot
};
bool Decode() override;
void GenerateInstructionCode(InstructionBlock* instruction_block) override;
private:
Form form;
Op op;
bool set_flags;
Register rn;
Register rd;
u32 imm5;
u32 imm12;
u32 type;
Register rm;
};

View file

@ -0,0 +1,48 @@
#include "Branch.h"
#include "Disassembler.h"
#include "InstructionBlock.h"
#include "ModuleGen.h"
static RegisterInstruction<Branch> register_instruction;
bool Branch::Decode()
{
// B imm, BL imm
if (ReadFields({ CondDef(), FieldDef<3>(5), FieldDef<1>(&link), FieldDef<24>(&imm24) }))
{
form = Form::Immediate;
return true;
}
// BLX reg
if (ReadFields({ CondDef(), FieldDef<24>(0x12fff3), FieldDef<4>(&rm) }))
{
if (rm == Register::PC) return false;
link = true;
form = Form::Register;
return true;
}
return false;
}
void Branch::GenerateInstructionCode(InstructionBlock* instruction_block)
{
auto ir_builder = instruction_block->Module()->IrBuilder();
if (link)
{
instruction_block->Write(Register::LR, ir_builder->getInt32(instruction_block->Address() + 4));
}
if (form == Form::Immediate)
{
auto pc = static_cast<s32>(imm24 << 2);
pc = pc << 6 >> 6; // Sign extend
pc += instruction_block->Address() + 8;
instruction_block->Module()->BranchWritePCConst(instruction_block, pc);
}
else
{
auto pc = instruction_block->Read(rm);
instruction_block->Write(Register::PC, pc);
instruction_block->Module()->BranchReadPC();
}
}

View file

@ -0,0 +1,19 @@
#include "Instruction.h"
#include "Types.h"
class Branch : public Instruction
{
public:
enum class Form
{
Immediate, Register
};
bool Decode() override;
void GenerateInstructionCode(InstructionBlock* instruction_block) override;
private:
Form form;
bool link;
u32 imm24;
Register rm;
};

View file

@ -0,0 +1,108 @@
#include "Instruction.h"
#include "common/logging/log.h"
#include <cassert>
#include "InstructionBlock.h"
#include "ModuleGen.h"
#include "MachineState.h"
#include "BinarySearch.h"
Instruction::Instruction()
{
}
Instruction::~Instruction()
{
}
bool Instruction::Read(u32 instruction, u32 address)
{
this->instruction = instruction;
this->address = address;
// Call the read of derived class
if (!Decode()) return false;
if (cond == Condition::Invalid) return false;
return true;
}
void Instruction::GenerateCode(InstructionBlock *instruction_block)
{
auto ir_builder = instruction_block->Module()->IrBuilder();
if (cond == Condition::AL)
{
GenerateInstructionCode(instruction_block);
}
else
{
auto pred = instruction_block->Module()->Machine()->ConditionPassed(cond);
auto passed_block = instruction_block->CreateBasicBlock("Passed");
auto not_passed_block = instruction_block->CreateBasicBlock("NotPassed");
ir_builder->CreateCondBr(pred, passed_block, not_passed_block);
ir_builder->SetInsertPoint(passed_block);
GenerateInstructionCode(instruction_block);
// If the basic block is terminated there has been a jump
// If not, jump to the next not passed block (which will jump to the next instruction)
if (!ir_builder->GetInsertBlock()->getTerminator())
{
ir_builder->CreateBr(not_passed_block);
}
ir_builder->SetInsertPoint(not_passed_block);
}
// If the basic block is terminated there has been a jump
// If not, jump to the next instruction
if (!ir_builder->GetInsertBlock()->getTerminator())
{
instruction_block->Module()->BranchWritePCConst(instruction_block, Address() + 4);
}
}
bool Instruction::ReadFields(const std::initializer_list<FieldDefObject> &fields)
{
size_t total_bit_count = 0;
auto current_instruction = instruction;
for (auto &field : fields)
{
total_bit_count += field.BitCount();
// Read the upper bits
auto value = current_instruction >> (32 - field.BitCount());
if (!field.Read(value)) return false;
// Remove the upper bits
current_instruction <<= field.BitCount();
}
assert(total_bit_count == 32);
return true;
}
Instruction::FieldDefObject Instruction::CondDef()
{
return FieldDef<4>(&cond);
}
Instruction::FieldDefObject::FieldDefObject(u32 bit_count, u32 const_value)
: bit_count(bit_count), const_value(const_value), constant(true)
{
}
Instruction::FieldDefObject::FieldDefObject(u32 bit_count, void* field_address, WriteFunctionType write_function)
: bit_count(bit_count), field_address(field_address), write_function(write_function), constant(false)
{
}
bool Instruction::FieldDefObject::Read(u32 value) const
{
if (constant)
{
return value == const_value;
}
else
{
write_function(value, field_address);
return true;
}
}

View file

@ -0,0 +1,111 @@
#pragma once
#include "common/common_types.h"
#include <initializer_list>
#include "Types.h"
class InstructionBlock;
class Instruction
{
protected:
class FieldDefObject;
public:
Instruction();
virtual ~Instruction();
/*
* Reads the instruction.
* Returns true on success, or false otherwise
*/
bool Read(u32 instruction, u32 address);
/*
* Generates non instruction specific code, and then calls GenerateInstructionCode
*/
void GenerateCode(InstructionBlock *instruction_block);
u32 Address() const { return address; }
protected:
/*
* Derived classes must override this, and implement it by calling ReadFields
*/
virtual bool Decode() = 0;
/*
* Generates code for the instruction into the instruction block
* Derived classes must override this
*/
virtual void GenerateInstructionCode(InstructionBlock *instruction_block) = 0;
/*
* Reads fields from the instruction
* The fields come most significant first
*/
bool ReadFields(const std::initializer_list<FieldDefObject> &fields);
/*
* Creates a field definition for a constant
*/
template<size_t BitCount>
static FieldDefObject FieldDef(u32 value);
/*
* Creates a field definition for a field
*/
template<size_t BitCount, typename Type>
static FieldDefObject FieldDef(Type *field);
/*
* Creates a field definition for the condition field
*/
FieldDefObject CondDef();
private:
/*
* Function used by FieldDefObject to write to a field
*/
template<typename Type>
static void WriteFunction(u32 value, void *field_address);
// Instruction value
u32 instruction;
// Instruction address
u32 address;
Condition cond;
};
/*
* Object produced by FieldDef
*/
class Instruction::FieldDefObject
{
public:
typedef void(*WriteFunctionType)(u32 value, void *field_address);
public:
// Constant
FieldDefObject(u32 bit_count, u32 const_value);
// Field
FieldDefObject(u32 bit_count, void *field_address, WriteFunctionType write_function);
bool Read(u32 value) const;
u32 BitCount() const { return bit_count; }
private:
u32 bit_count;
u32 const_value;
void *field_address;
WriteFunctionType write_function;
bool constant;
};
template <size_t BitCount>
Instruction::FieldDefObject Instruction::FieldDef(u32 value)
{
return FieldDefObject(BitCount, value);
}
template <size_t BitCount, typename Type>
Instruction::FieldDefObject Instruction::FieldDef(Type* field)
{
return FieldDefObject(BitCount, field, &Instruction::WriteFunction<Type>);
}
template <typename Type>
void Instruction::WriteFunction(u32 value, void *field_address)
{
*static_cast<Type *>(field_address) = Type(value);
}

View file

@ -0,0 +1,107 @@
#include "Ldr.h"
#include "Disassembler.h"
#include "InstructionBlock.h"
#include <llvm/IR/Value.h>
#include <core/loader/loader.h>
#include <core/mem_map.h>
#include "MachineState.h"
static RegisterInstruction<Ldr> register_instruction;
bool Ldr::Decode()
{
if (ReadFields({ CondDef(), FieldDef<4>(5), FieldDef<1>(&U), FieldDef<7>(0x1f),
FieldDef<4>(&rt), FieldDef<12>(&imm12)}))
{
form = Form::PC;
return true;
}
if (ReadFields({ CondDef(), FieldDef<3>(2), FieldDef<1>(&P), FieldDef<1>(&U), FieldDef<1>(0), FieldDef<1>(&W), FieldDef<1>(1), FieldDef<4>(&rn),
FieldDef<4>(&rt), FieldDef<12>(&imm12) }))
{
form = Form::Reg;
if (!P && W) return false; // SEE LDRT;
//if (rn == Register::SP && !P && U && !W && imm12 == 4) return false; // SEE POP;
if ((!P || W) && rn == rt) return false; // UNPREDICTABLE;
return true;
}
if (ReadFields({ CondDef(), FieldDef<6>(0x22), FieldDef<1>(&W), FieldDef<1>(1), FieldDef<4>(&rn),
FieldDef<16>(&register_list) }))
{
form = Form::MultiReg;
//if (W && rn == Register::SP && register_list.size() > 1) return false; // SEE POP (ARM);
if (rn == Register::PC || register_list.size() < 1) return false; // UNPREDICTABLE;
if (W && register_list[(u32)rn]) return false; // UNPREDICTABLE;
return true;
}
return false;
}
void Ldr::GenerateInstructionCode(InstructionBlock* instruction_block)
{
auto ir_builder = instruction_block->IrBuilder();
if (form != Form::MultiReg)
{
llvm::Value *address = nullptr;
llvm::Value *value = nullptr;
auto add = (bool)U;
if (form == Form::PC)
{
auto base = instruction_block->Address() + 8;
auto constAddress = add ? base + imm12 : base - imm12;
auto constAddressEnd = constAddress + 4;
// If the value is read only, inline it
if (constAddress >= Loader::ROMCodeStart && constAddressEnd <= (Loader::ROMCodeStart + Loader::ROMCodeSize) ||
constAddress >= Loader::ROMReadOnlyDataStart && constAddressEnd <= (Loader::ROMReadOnlyDataStart + Loader::ROMReadOnlyDataSize))
{
value = ir_builder->getInt32(Memory::Read32(constAddress));
}
else
{
address = ir_builder->getInt32(constAddress);
}
}
else
{
auto index = P == 1;
auto wback = P == 0 || W == 1;
auto source_register = instruction_block->Read(rn);
auto imm32 = ir_builder->getInt32(add ? imm12 : -imm12);
auto offset_address = ir_builder->CreateAdd(source_register, imm32);
address = index ? offset_address : source_register;
if (wback)
instruction_block->Write(rn, offset_address);
}
if (!value) value = instruction_block->Module()->Machine()->ReadMemory32(address);
instruction_block->Write(rt, value);
if (rt == Register::PC)
instruction_block->Module()->BranchReadPC();
}
else
{
auto wback = (bool)W;
auto address = instruction_block->Read(rn);
for (auto i = 0; i < 16; ++i)
{
if (!register_list[i]) continue;
instruction_block->Write((Register)i, instruction_block->Module()->Machine()->ReadMemory32(address));
address = ir_builder->CreateAdd(address, ir_builder->getInt32(4));
}
if (wback)
instruction_block->Write(rn, address);
if (register_list[15])
instruction_block->Module()->BranchReadPC();
}
}

View file

@ -0,0 +1,25 @@
#include "Instruction.h"
#include "Types.h"
#include <bitset>
class Ldr : public Instruction
{
public:
enum class Form
{
PC, Reg, MultiReg
};
bool Decode() override;
void GenerateInstructionCode(InstructionBlock* instruction_block) override;
private:
Form form;
bool U;
Register rt;
u32 imm12;
bool P;
bool W;
Register rn;
std::bitset<16> register_list;
};

View file

@ -0,0 +1,101 @@
#include "MovShift.h"
#include "Disassembler.h"
#include "InstructionBlock.h"
#include "ModuleGen.h"
#include "ARMFuncs.h"
#include <binary_translation/BinarySearch.h>
static RegisterInstruction<MovShift> register_instruction;
bool MovShift::Decode()
{
if (ReadFields({ CondDef(), FieldDef<3>(0), FieldDef<4>(13), FieldDef<1>(&s), FieldDef<4>(0),
FieldDef<4>(&rd), FieldDef<5>(&imm5), FieldDef<2>(&op2), FieldDef<1>(0), FieldDef<4>(&rm) }))
{
form = Form::Register;
if (rm == Register::PC) return false;
if (rd == Register::PC && s) return false; // SEE SUBS PC, LR and related instructions;
return true;
}
if (ReadFields({ CondDef(), FieldDef<7>(0x1d), FieldDef<1>(&s), FieldDef<4>(0),
FieldDef<4>(&rd), FieldDef<12>(&imm12) }))
{
form = Form::ImmediateA1;
return true;
}
if (ReadFields({ CondDef(), FieldDef<8>(0x30), FieldDef<4>(&imm4),
FieldDef<4>(&rd), FieldDef<12>(&imm12) }))
{
s = false;
form = Form::ImmediateA2;
if (rd == Register::PC) return false; // UNPREDICTIBLE
return true;
}
return false;
}
void MovShift::GenerateInstructionCode(InstructionBlock* instruction_block)
{
auto ir_builder = instruction_block->IrBuilder();
auto carry_in = instruction_block->Read(Register::C);
ARMFuncs::ResultCarry result = {};
switch (form)
{
case Form::Register:
result = { instruction_block->Read(rm), carry_in };
switch (op2)
{
case Op2Type::MoveAndLSL:
if (imm5 != 0)
{
result = ARMFuncs::Shift_C(instruction_block, result.result, ARMFuncs::SRType::LSL,
ARMFuncs::DecodeImmShift(instruction_block, 0, imm5).amount, result.carry);
}
break;
case Op2Type::LSR:
result = ARMFuncs::Shift_C(instruction_block, result.result, ARMFuncs::SRType::LSR,
ARMFuncs::DecodeImmShift(instruction_block, 1, imm5).amount, result.carry);
break;
case Op2Type::ASR:
result = ARMFuncs::Shift_C(instruction_block, result.result, ARMFuncs::SRType::ASR,
ARMFuncs::DecodeImmShift(instruction_block, 2, imm5).amount, result.carry);
break;
case Op2Type::RRXAndROR:
if (imm5 == 0)
{
result = ARMFuncs::Shift_C(instruction_block, result.result, ARMFuncs::SRType::RRX,
ir_builder->getInt32(1), result.carry);
}
else
{
result = ARMFuncs::Shift_C(instruction_block, result.result, ARMFuncs::SRType::ROR,
ARMFuncs::DecodeImmShift(instruction_block, 3, imm5).amount, result.carry);
}
break;
}
break;
case Form::ImmediateA1:
result = ARMFuncs::ARMExpandImm_C(instruction_block, imm12, carry_in);
break;
case Form::ImmediateA2:
result.result = ir_builder->getInt32((imm4 << 12) | imm12);
break;
}
instruction_block->Write(rd, result.result);
if (s)
{
instruction_block->Write(Register::N, ir_builder->CreateTrunc(ir_builder->CreateLShr(result.result, 31), ir_builder->getInt1Ty()));
instruction_block->Write(Register::Z, ir_builder->CreateICmpEQ(result.result, ir_builder->getInt32(0)));
if (result.carry != carry_in)
instruction_block->Write(Register::C, result.carry);
}
if (rd == Register::PC)
{
instruction_block->Module()->BranchReadPC();
}
}

View file

@ -0,0 +1,33 @@
#include "Instruction.h"
#include "Types.h"
/*
* Data processing instructions
* ARMv7-A 5.2.1 (register), 5.2.2 (register-shifted register, 5.2.3 (immediate)
*/
class MovShift : public Instruction
{
public:
enum class Op2Type
{
MoveAndLSL, LSR, ASR, RRXAndROR
};
enum class Form
{
Register, ImmediateA1, ImmediateA2
};
bool Decode() override;
void GenerateInstructionCode(InstructionBlock* instruction_block) override;
private:
Form form;
bool s;
Register rn;
Register rd;
Register rm;
u32 imm12;
u32 imm5;
u32 imm4;
Op2Type op2;
};

View file

@ -0,0 +1,70 @@
#include "Str.h"
#include "Disassembler.h"
#include "InstructionBlock.h"
#include <llvm/IR/Value.h>
#include <core/loader/loader.h>
#include <core/mem_map.h>
#include "MachineState.h"
static RegisterInstruction<Str> register_instruction;
bool Str::Decode()
{
if (ReadFields({ CondDef(), FieldDef<3>(2), FieldDef<1>(&P), FieldDef<1>(&U), FieldDef<1>(0), FieldDef<1>(&W), FieldDef<1>(0), FieldDef<4>(&rn),
FieldDef<4>(&rt), FieldDef<12>(&imm12) }))
{
form = Form::Immediate;
if (!P && W) return false; // SEE LDRT;
if ((!P || W) && (rn == rt || rn == Register::PC)) return false; // UNPREDICTABLE;
if (rn == Register::PC) return false; // Currently unimplemented
return true;
}
if (ReadFields({ CondDef(), FieldDef<6>(0x24), FieldDef<1>(&W), FieldDef<1>(0), FieldDef<4>(&rn),
FieldDef<16>(&register_list) }))
{
form = Form::MultiReg;
if (rn == Register::PC || register_list.size() < 1) return false; // UNPREDICTABLE;
if (register_list[(int)Register::PC]) return false; // Currently unimplemented
return true;
}
return false;
}
void Str::GenerateInstructionCode(InstructionBlock* instruction_block)
{
auto ir_builder = instruction_block->IrBuilder();
if (form == Form::Immediate)
{
auto add = U == 1;
auto index = P == 1;
auto wback = P == 0 || W == 1;
auto source_register = instruction_block->Read(rn);
auto imm32 = ir_builder->getInt32(add ? imm12 : -imm12);
auto offset_address = ir_builder->CreateAdd(source_register, imm32);
auto address = index ? offset_address : source_register;
if (wback)
instruction_block->Write(rn, offset_address);
instruction_block->Module()->Machine()->WriteMemory32(address, instruction_block->Read(rt));
}
else
{
auto wback = W == 1;
auto write_back_address = ir_builder->CreateSub(instruction_block->Read(rn), ir_builder->getInt32(4 * register_list.count()));
auto address = write_back_address;
for (auto i = 0; i < 16; ++i)
{
if (!register_list[i]) continue;
instruction_block->Module()->Machine()->WriteMemory32(address, instruction_block->Read((Register)i));
address = ir_builder->CreateAdd(address, ir_builder->getInt32(4));
}
if (wback)
instruction_block->Write(rn, write_back_address);
}
}

View file

@ -0,0 +1,25 @@
#include "Instruction.h"
#include "Types.h"
#include <bitset>
class Str : public Instruction
{
public:
enum class Form
{
Immediate, Reg, MultiReg
};
bool Decode() override;
void GenerateInstructionCode(InstructionBlock* instruction_block) override;
private:
Form form;
bool U;
Register rt;
u32 imm12;
bool P;
bool W;
Register rn;
std::bitset<16> register_list;
};

View file

@ -0,0 +1,19 @@
#pragma once
/*
* A register in a broad sense: R0-R15, and flags
*/
enum class Register
{
R0, R1, R2, R3, R4, R5, R6, R7,
R8, R9, R10, R11, R12, SP, LR, PC,
N, Z, C, V,
Count
};
static const size_t RegisterCount = static_cast<size_t>(Register::Count);
enum class Condition
{
EQ, NE, CS, CC, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, Invalid
};

View file

@ -0,0 +1,169 @@
#include "MachineState.h"
#include "ModuleGen.h"
#include "Instructions/Types.h"
#include <llvm/IR/GlobalValue.h>
#include <llvm/IR/Constants.h>
#include <llvm/IR/LLVMContext.h>
#include <llvm/IR/GlobalVariable.h>
#include "TBAA.h"
using namespace llvm;
MachineState::MachineState(ModuleGen *module) : module(module)
{
}
void MachineState::GenerateGlobals()
{
auto ir_builder = module->IrBuilder();
#if ARCHITECTURE_x86_64
auto registers_global_initializer = ConstantPointerNull::get(IntegerType::getInt64PtrTy(getGlobalContext()));
#else
auto registers_global_initializer = ConstantPointerNull::get(IntegerType::getInt32PtrTy(getGlobalContext()));
#endif
registers_global = new GlobalVariable(*module->Module(), registers_global_initializer->getType(),
false, GlobalValue::ExternalLinkage, registers_global_initializer, "Registers");
// Flags is stored internally as i1* indexed in multiples of 4
auto flags_global_initializer = ConstantPointerNull::get(IntegerType::getInt1PtrTy(getGlobalContext()));
flags_global = new GlobalVariable(*module->Module(), flags_global_initializer->getType(),
false, GlobalValue::ExternalLinkage, flags_global_initializer, "Flags");
auto memory_read_32_signature = FunctionType::get(ir_builder->getInt32Ty(), ir_builder->getInt32Ty(), false);
auto memory_read_32_ptr = PointerType::get(memory_read_32_signature, 0);
auto memory_read_32_initializer = ConstantPointerNull::get(memory_read_32_ptr);
memory_read_32_global = new GlobalVariable(*module->Module(), memory_read_32_ptr,
false, GlobalValue::ExternalLinkage, memory_read_32_initializer, "Memory::Read32");
llvm::Type *memory_write_32_args[] = { ir_builder->getInt32Ty(), ir_builder->getInt32Ty() };
auto memory_write_32_signature = FunctionType::get(ir_builder->getVoidTy(), memory_write_32_args, false);
auto memory_write_32_ptr = PointerType::get(memory_write_32_signature, 0);
auto memory_write_32_initializer = ConstantPointerNull::get(memory_write_32_ptr);
memory_write_32_global = new GlobalVariable(*module->Module(), memory_write_32_ptr,
false, GlobalValue::ExternalLinkage, memory_write_32_initializer, "Memory::Write32");
}
Value *MachineState::GetRegisterPtr(Register reg)
{
Value *global;
unsigned index;
if (reg <= Register::PC)
{
global = registers_global;
index = static_cast<unsigned>(reg)-static_cast<unsigned>(Register::R0);
}
else
{
global = flags_global;
index = (static_cast<unsigned>(reg)-static_cast<unsigned>(Register::N)) * 4;
}
auto base = module->IrBuilder()->CreateAlignedLoad(global, 4);
module->GetTBAA()->TagConst(base);
#if ARCHITECTURE_x86_64
return module->IrBuilder()->CreateConstInBoundsGEP1_64(base, index);
#else
return module->IrBuilder()->CreateConstInBoundsGEP1_32(base->getType(),base, index);
#endif
}
Value* MachineState::ReadRegiser(Register reg, bool allow_pc,bool full_length)
{
assert(allow_pc || reg != Register::PC);
#if ARCHITECTURE_x86_64
Value* load;
if (reg == Register::PC&&full_length) {
load = module->IrBuilder()->CreateAlignedLoad(GetRegisterPtr(reg), 4);
module->GetTBAA()->TagRegister(static_cast<Instruction*>(load), reg);
}
else if(reg <= Register::PC){
auto loadinst = module->IrBuilder()->CreateAlignedLoad(GetRegisterPtr(reg), 4);
module->GetTBAA()->TagRegister(loadinst, reg);
load = module->IrBuilder()->CreateIntCast(loadinst, module->IrBuilder()->getInt32Ty(),false);
}
else {
auto loadinst = module->IrBuilder()->CreateAlignedLoad(GetRegisterPtr(reg), 4);
module->GetTBAA()->TagRegister(loadinst, reg);
load = module->IrBuilder()->CreateIntCast(loadinst, module->IrBuilder()->getInt1Ty(), false);
}
#else
auto load = module->IrBuilder()->CreateAlignedLoad(GetRegisterPtr(reg), 4);
module->GetTBAA()->TagRegister(load, reg);
#endif
return load;
}
Value* MachineState::WriteRegiser(Register reg, Value *value,bool full_length)
{
#if ARCHITECTURE_x86_64
Instruction* store;
if (reg == Register::PC && full_length)
store = module->IrBuilder()->CreateAlignedStore(value, GetRegisterPtr(reg), 4);
else if(reg <= Register::PC)
store = module->IrBuilder()->CreateAlignedStore(module->IrBuilder()->CreateIntCast(value, module->IrBuilder()->getInt64Ty(), false), GetRegisterPtr(reg), 4);
else
store = module->IrBuilder()->CreateAlignedStore(module->IrBuilder()->CreateIntCast(value, module->IrBuilder()->getInt1Ty(), false), GetRegisterPtr(reg), 4);
#else
auto store = module->IrBuilder()->CreateAlignedStore(value, GetRegisterPtr(reg), 4);
#endif
module->GetTBAA()->TagRegister(store, reg);
return store;
}
Value* MachineState::ConditionPassed(Condition cond)
{
auto ir_builder = module->IrBuilder();
Value *pred = nullptr;
auto not = false;
switch (cond)
{
case Condition::NE: case Condition::CC: case Condition::PL: case Condition::VC:
case Condition::LS: case Condition::LT: case Condition::LE:
not = true;
cond = (Condition)((int)cond - 1);
}
switch (cond)
{
case Condition::EQ: pred = ReadRegiser(Register::Z); break;
case Condition::CS: pred = ReadRegiser(Register::C); break;
case Condition::MI: pred = ReadRegiser(Register::N); break;
case Condition::VS: pred = ReadRegiser(Register::V); break;
case Condition::HI: pred = ir_builder->CreateAnd(ReadRegiser(Register::C), ir_builder->CreateNot(ReadRegiser(Register::Z))); break;
case Condition::GE: pred = ir_builder->CreateICmpEQ(ReadRegiser(Register::N), ReadRegiser(Register::V)); break;
case Condition::GT: pred = ir_builder->CreateAnd(ir_builder->CreateNot(ReadRegiser(Register::Z)),
ir_builder->CreateICmpEQ(ReadRegiser(Register::N), ReadRegiser(Register::V))); break;
case Condition::AL: pred = ir_builder->getInt1(true);
default: assert(false, "Invalid condition");
}
if (not) pred = ir_builder->CreateNot(pred);
return pred;
}
llvm::Value* MachineState::ReadMemory32(llvm::Value* address)
{
auto ir_builder = module->IrBuilder();
auto memory_read_32 = ir_builder->CreateLoad(memory_read_32_global);
module->GetTBAA()->TagConst(memory_read_32);
auto call = ir_builder->CreateCall(memory_read_32,address);
call->setOnlyReadsMemory();
module->GetTBAA()->TagMemory(call);
return call;
}
llvm::Value* MachineState::WriteMemory32(llvm::Value* address, llvm::Value* value)
{
auto ir_builder = module->IrBuilder();
auto memory_write_32 = ir_builder->CreateLoad(memory_write_32_global);
module->GetTBAA()->TagConst(memory_write_32);
auto call = ir_builder->CreateCall(memory_write_32, llvm::ArrayRef<llvm::Value*>(std::vector<llvm::Value*>{ address, value }));
module->GetTBAA()->TagMemory(call);
return value;
}

View file

@ -0,0 +1,59 @@
#pragma once
enum class Condition;
enum class Register;
class ModuleGen;
namespace llvm
{
class Value;
class Instruction;
class GlobalVariable;
}
/*
Contains all the machine state:
Registers, Flags, Memory
*/
class MachineState
{
public:
MachineState(ModuleGen *module);
void GenerateGlobals();
// allow_pc exists because most of the times reading the PC is not what the instruction meant
llvm::Value *ReadRegiser(Register reg, bool allow_pc = false,bool full_length = false);
llvm::Value *WriteRegiser(Register reg, llvm::Value *value, bool full_length = false);
llvm::Value* ConditionPassed(Condition cond);
llvm::Value* ReadMemory32(llvm::Value* address);
llvm::Value* WriteMemory32(llvm::Value* address, llvm::Value* value);
private:
// Returns the address of a register or a flag
llvm::Value *GetRegisterPtr(Register reg);
ModuleGen *module;
/*
* u32 *Registers;
* The registers of the cpu
*/
llvm::GlobalVariable *registers_global;
/*
* u32 *Flags;
* The flags of the cpu
* Orderered N, Z, C, V
*/
llvm::GlobalVariable *flags_global;
/*
* u32 (u32) Memory::Read32
* Reads the memory at address
*/
llvm::GlobalVariable *memory_read_32_global;
/*
* void (u32, u32) Memory::Write32
* Writes the memory at address
*/
llvm::GlobalVariable *memory_write_32_global;
};

View file

@ -0,0 +1,308 @@
#include "ModuleGen.h"
#include "Disassembler.h"
#include "core/loader/loader.h"
#include "core/mem_map.h"
#include "Instructions/Instruction.h"
#include "Instructions/Types.h"
#include "InstructionBlock.h"
#include "common/logging/log.h"
#include <llvm/IR/Function.h>
#include <llvm/IR/GlobalVariable.h>
#include <llvm/ADT/STLExtras.h>
#include <stack>
#include "MachineState.h"
#include "TBAA.h"
#include "BlockColors.h"
using namespace llvm;
ModuleGen::ModuleGen(llvm::Module* module, bool verify)
: module(module),
verify(verify)
{
ir_builder = make_unique<IRBuilder<>>(getGlobalContext());
machine = make_unique<MachineState>(this);
tbaa = make_unique<TBAA>();
block_colors = make_unique<BlockColors>(this);
}
ModuleGen::~ModuleGen()
{
}
void ModuleGen::Run()
{
tbaa->GenerateTags();
GenerateGlobals();
DecodeInstructions();
GenerateInstructionsEntry();
GenerateCanRunFunction();
GenerateRunFunction();
GenerateGetBlockAddressFunction();
GenerateInstructionsCode();
ColorBlocks();
GenerateBlockAddressArray();
}
void ModuleGen::GenerateIncInstructionCount()
{
auto load = ir_builder->CreateLoad(instruction_count);
auto inc = ir_builder->CreateAdd(load, ir_builder->getInt32(1));
auto store = ir_builder->CreateStore(inc, instruction_count);
tbaa->TagInstructionCount(load);
tbaa->TagInstructionCount(store);
}
void ModuleGen::BranchReadPC()
{
if (verify)
{
ir_builder->CreateRetVoid();
}
else
{
auto call = ir_builder->CreateCall(run_function);
call->setTailCall();
ir_builder->CreateRetVoid();
}
}
void ModuleGen::BranchWritePCConst(InstructionBlock *current, u64 pc)
{
if (verify)
{
// Just write PC and exit on verify
machine->WriteRegiser(Register::PC, ir_builder->getInt32(pc));
ir_builder->CreateRetVoid();
}
else
{
auto i = instruction_blocks_by_pc.find(pc);
if (i != instruction_blocks_by_pc.end())
{
// Found instruction, jump to it
ir_builder->CreateBr(i->second->GetEntryBasicBlock());
InstructionBlock::Link(i->second, current);
}
else
{
// Didn't find instruction, write PC and exit
machine->WriteRegiser(Register::PC, ir_builder->getInt32(pc));
ir_builder->CreateRetVoid();
}
}
}
void ModuleGen::GenerateGlobals()
{
machine->GenerateGlobals();
auto function_pointer = PointerType::get(block_colors->GetFunctionType(), 0);
block_address_type = StructType::get(function_pointer, ir_builder->getInt32Ty(), nullptr);
block_address_not_present = ConstantStruct::get(block_address_type, ConstantPointerNull::get(function_pointer), ir_builder->getInt32(0), nullptr);
#if ARCHITECTURE_x86_64
auto get_block_address_function_type = FunctionType::get(block_address_type, ir_builder->getInt64Ty(), false);
#else
auto get_block_address_function_type = FunctionType::get(block_address_type, ir_builder->getInt32Ty(), false);
#endif
get_block_address_function = Function::Create(get_block_address_function_type, GlobalValue::PrivateLinkage, "GetBlockAddress", module);
auto can_run_function_type = FunctionType::get(ir_builder->getInt1Ty(), false);
can_run_function = Function::Create(can_run_function_type, GlobalValue::ExternalLinkage, "CanRun", module);
auto run_function_type = FunctionType::get(ir_builder->getVoidTy(), false);
run_function = Function::Create(run_function_type, GlobalValue::ExternalLinkage, "Run", module);
block_address_array_base = Loader::ROMCodeStart / 4;
block_address_array_size = Loader::ROMCodeSize / 4;
block_address_array_type = ArrayType::get(block_address_type, block_address_array_size);
block_address_array = new GlobalVariable(*module, block_address_array_type, true, GlobalValue::ExternalLinkage, nullptr, "BlockAddressArray");
// bool Verify - contains the value of verify for citra usage
new GlobalVariable(*module, ir_builder->getInt1Ty(), true, GlobalValue::ExternalLinkage, ir_builder->getInt1(verify), "Verify");
instruction_count = new GlobalVariable(*Module(), ir_builder->getInt32Ty(), false, GlobalValue::ExternalLinkage,
ir_builder->getInt32(0), "InstructionCount");
}
void ModuleGen::GenerateBlockAddressArray()
{
auto local_block_address_array_values = std::make_unique<Constant*[]>(block_address_array_size);
std::fill(
local_block_address_array_values.get(),
local_block_address_array_values.get() + block_address_array_size,
block_address_not_present);
/*for (auto i = 0; i < instruction_blocks.size(); ++i)
{
auto &block = instruction_blocks[i];
auto entry_basic_block = block->GetEntryBasicBlock();
auto index = block->Address() / 4 - block_address_array_base;
auto color_index = 0;
local_block_address_array_values[index] = BConst
}*/
for (auto color = 0; color < block_colors->GetColorCount(); ++color)
{
auto function = block_colors->GetColorFunction(color);
for (auto i = 0; i < block_colors->GetColorInstructionCount(color); ++i)
{
auto block = block_colors->GetColorInstruction(color, i);
auto index = block->Address() / 4 - block_address_array_base;
auto value = ConstantStruct::get(block_address_type, function, ir_builder->getInt32(i), nullptr);
local_block_address_array_values[index] = value;
}
}
auto local_block_address_array_values_ref = ArrayRef<Constant*>(local_block_address_array_values.get(), block_address_array_size);
auto local_blocks_address_array = ConstantArray::get(block_address_array_type, local_block_address_array_values_ref);
block_address_array->setInitializer(local_blocks_address_array);
}
void ModuleGen::GenerateGetBlockAddressFunction()
{
/*
entry_basic_block:
auto index = (pc - block_address_array_base) / 4;
if(((pc & 3) == 0) && index < block_address_array_size)
{
index_in_bounds_basic_block:
return block_address_array[index];
}
else
{
index_out_of_bounds_basic_block:
return nullptr;
}
*/
auto pc = &*get_block_address_function->arg_begin();
auto entry_basic_block = BasicBlock::Create(getGlobalContext(), "Entry", get_block_address_function);
auto index_in_bounds_basic_block = BasicBlock::Create(getGlobalContext(), "IndexInBounds", get_block_address_function);
auto index_out_of_bounds_basic_block = BasicBlock::Create(getGlobalContext(), "IndexOutOfBounds", get_block_address_function);
ir_builder->SetInsertPoint(entry_basic_block);
#define _BITAPPEND(a,b) a ## b
#if ARCHITECTURE_x86_64
#define BITAPPEND(c) _BITAPPEND(c,64)
#else
#define BITAPPEND(c) _BITAPPEND(c,32)
#endif
auto index = ir_builder->CreateUDiv(pc, ir_builder->BITAPPEND(getInt)(4), "", true);
index = ir_builder->CreateSub(index, ir_builder->BITAPPEND(getInt)(block_address_array_base));
auto in_bounds_pred = ir_builder->CreateICmpULT(index, ir_builder->BITAPPEND(getInt)(block_address_array_size));
auto arm_pred = ir_builder->CreateICmpEQ(ir_builder->CreateAnd(pc, 3), ir_builder->BITAPPEND(getInt)(0));
auto pred = ir_builder->CreateAnd(in_bounds_pred, arm_pred);
ir_builder->CreateCondBr(pred, index_in_bounds_basic_block, index_out_of_bounds_basic_block);
ir_builder->SetInsertPoint(index_in_bounds_basic_block);
Value *gep_values[] = { ir_builder->BITAPPEND(getInt)(0), index };
auto block_address = ir_builder->CreateLoad(ir_builder->CreateInBoundsGEP(block_address_array, gep_values));
tbaa->TagConst(block_address);
ir_builder->CreateRet(block_address);
ir_builder->SetInsertPoint(index_out_of_bounds_basic_block);
ir_builder->CreateRet(block_address_not_present);
#undef BITAPPEND(a)
#undef _BITAPPEND(a,b)
}
void ModuleGen::GenerateCanRunFunction()
{
// return GetBlockAddress(Read(PC)).function != nullptr;
auto basic_block = BasicBlock::Create(getGlobalContext(), "Entry", can_run_function);
ir_builder->SetInsertPoint(basic_block);
auto block_address = ir_builder->CreateCall(get_block_address_function, machine->ReadRegiser(Register::PC, true,true));
auto function = ir_builder->CreateExtractValue(block_address, 0);
ir_builder->CreateRet(ir_builder->CreateICmpNE(function,
ConstantPointerNull::get(cast<PointerType>(function->getType()))));
}
void ModuleGen::GenerateRunFunction()
{
/*
run_function_entry:
auto block = GetBlockAddress(Read(PC))
if(block_address != nullptr)
{
block_present_basic_block:
block.function(block.index);
return;
}
else
{
block_not_present_basic_block:
return;
}
*/
run_function_entry = BasicBlock::Create(getGlobalContext(), "Entry", run_function);
auto block_present_basic_block = BasicBlock::Create(getGlobalContext(), "BlockPresent", run_function);
auto block_not_present_basic_block = BasicBlock::Create(getGlobalContext(), "BlockNotPresent", run_function);
ir_builder->SetInsertPoint(run_function_entry);
auto block_address = ir_builder->CreateCall(get_block_address_function, Machine()->ReadRegiser(Register::PC, true,true));
auto function = ir_builder->CreateExtractValue(block_address, 0);
auto block_present_pred = ir_builder->CreateICmpNE(function,
ConstantPointerNull::get(cast<PointerType>(function->getType())));
ir_builder->CreateCondBr(block_present_pred, block_present_basic_block, block_not_present_basic_block);
ir_builder->SetInsertPoint(block_present_basic_block);
auto index = ir_builder->CreateExtractValue(block_address, 1);
auto call = ir_builder->CreateCall(function, index);
call->setTailCall();
ir_builder->CreateRetVoid();
ir_builder->SetInsertPoint(block_not_present_basic_block);
ir_builder->CreateRetVoid();
}
void ModuleGen::DecodeInstructions()
{
size_t generated = 0;
size_t total = 0;
for (auto i = Loader::ROMCodeStart; i <= Loader::ROMCodeStart + Loader::ROMCodeSize - 4; i += 4)
{
++total;
auto bytes = Memory::Read32(i);
if (bytes == 0) continue;
auto instruction = Disassembler::Disassemble(bytes, i);
if (instruction == nullptr) continue;
++generated;
auto instruction_block = std::make_unique<InstructionBlock>(this, instruction.release());
instruction_blocks_by_pc[i] = instruction_block.get();
instruction_blocks.push_back(std::move(instruction_block));
}
LOG_INFO(BinaryTranslator, "Generated % 8d blocks of % 8d = % 3.1f%%", generated, total, 100.0 * generated / total);
}
void ModuleGen::GenerateInstructionsEntry()
{
for (auto &instruction : instruction_blocks)
{
instruction->GenerateEntryBlock();
}
}
void ModuleGen::GenerateInstructionsCode()
{
for (auto &instruction : instruction_blocks)
{
instruction->GenerateCode();
}
}
void ModuleGen::ColorBlocks()
{
for (auto &instruction : instruction_blocks)
{
block_colors->AddBlock(instruction.get());
}
block_colors->GenerateFunctions();
}

View file

@ -0,0 +1,113 @@
#pragma once
#include <llvm/IR/IRBuilder.h>
#include <unordered_map>
#include <common/common_types.h>
enum class Register;
class InstructionBlock;
class MachineState;
class TBAA;
class BlockColors;
namespace llvm
{
class Module;
}
class ModuleGen
{
public:
/*
* Verify - produce a code that can be verified
* this is done by returning after every opcode
*/
explicit ModuleGen(llvm::Module *module, bool verify);
~ModuleGen();
void Run();
void GenerateIncInstructionCount();
// Generate code to read pc and run all following instructions, used in cases of indirect branch
void BranchReadPC();
// Generate code to write to pc and run all following instructions, used in cases of direct branch
void BranchWritePCConst(InstructionBlock *current, u64 pc);
llvm::IRBuilder<> *IrBuilder() { return ir_builder.get(); }
llvm::Module *Module() { return module; }
MachineState *Machine() { return machine.get(); }
TBAA *GetTBAA() { return tbaa.get(); }
private:
// Generates the declarations of all the globals of the module
void GenerateGlobals();
void GenerateBlockAddressArray();
void GenerateGetBlockAddressFunction();
void GenerateCanRunFunction();
void GenerateRunFunction();
// Creates InstructionBlock for each instruction
void DecodeInstructions();
// Generates the entry basic blocks for each instruction
void GenerateInstructionsEntry();
// Generates the code of each instruction
void GenerateInstructionsCode();
// Must be run after the instruction code is generated since it depends on the
// inter block jumps
void ColorBlocks();
llvm::Module *module;
bool verify;
std::unique_ptr<MachineState> machine;
std::unique_ptr<TBAA> tbaa;
std::unique_ptr<llvm::IRBuilder<>> ir_builder;
size_t block_address_array_base;
size_t block_address_array_size;
/*
* struct BlockAddress
* {
* void (*function)(u32 index);
* u32 index;
* }
*/
llvm::StructType *block_address_type;
llvm::Constant *block_address_not_present;
/*
* i8 **BlockAddressArray;
* The array at [i/4 - block_address_array_base] contains the block address for the instruction at i
* or nullptr if it is not decoded
*/
llvm::ArrayType *block_address_array_type;
llvm::GlobalVariable *block_address_array;
/*
* i32 InstructionCount;
* The count of instructions executed
*/
llvm::GlobalVariable *instruction_count;
/*
* i8 *GetBlockAddress(u32 pc)
* Returns the address of the block for the instruction at pc
*/
llvm::Function *get_block_address_function;
/*
* bool CanRun()
* Returns whether there is a binary translation available for a PC
*/
llvm::Function *can_run_function;
/*
* void Run()
* Runs binary translated opcodes
*/
llvm::Function *run_function;
llvm::BasicBlock *run_function_entry;
/*
* All the instruction blocks
*/
std::vector<std::unique_ptr<InstructionBlock>> instruction_blocks;
std::unordered_map<u64, InstructionBlock *> instruction_blocks_by_pc;
std::unique_ptr<BlockColors> block_colors;
};

View file

@ -0,0 +1,45 @@
#include "TBAA.h"
#include <llvm/IR/MDBuilder.h>
#include <llvm/IR/LLVMContext.h>
#include <llvm/IR/Metadata.h>
#include <sstream>
#include <llvm/IR/Instruction.h>
using namespace llvm;
void TBAA::GenerateTags()
{
MDBuilder md_builder(getGlobalContext());
auto tbaa_root = md_builder.createTBAARoot("Root");
for (auto i = 0; i < RegisterCount; ++i)
{
std::stringstream ss;
ss << "Register_" << i;
register_nodes[i] = md_builder.createTBAAScalarTypeNode(ss.str(), tbaa_root);
}
const_node = md_builder.createTBAAScalarTypeNode("Readonly", tbaa_root);
instruction_count_node = md_builder.createTBAAScalarTypeNode("InstructionCount", tbaa_root);
memory_node = md_builder.createTBAAScalarTypeNode("Memory", tbaa_root);
}
void TBAA::TagRegister(Instruction* instruction, Register reg)
{
instruction->setMetadata(LLVMContext::MD_tbaa, register_nodes[(int)reg]);
}
void TBAA::TagConst(Instruction* instruction)
{
instruction->setMetadata(LLVMContext::MD_tbaa, const_node);
}
void TBAA::TagInstructionCount(llvm::Instruction* instruction)
{
instruction->setMetadata(LLVMContext::MD_tbaa, instruction_count_node);
}
void TBAA::TagMemory(llvm::Instruction* instruction)
{
instruction->setMetadata(LLVMContext::MD_tbaa, memory_node);
}

View file

@ -0,0 +1,34 @@
#pragma once
#include "Instructions/Types.h"
#include <llvm/IR/Instructions.h>
namespace llvm
{
class Instruction;
class MDNode;
}
/*
Manages TBAA.
A TBAA type is generated for each register and global.
It is a bit of an abuse of TBAA but because nothing aliases it is a good way
to notify LLVM of it.
*/
class TBAA
{
public:
void GenerateTags();
void TagRegister(llvm::Instruction *instruction, Register reg);
void TagConst(llvm::Instruction *instruction);
void TagInstructionCount(llvm::Instruction *instruction);
void TagMemory(llvm::Instruction *instruction);
private:
llvm::MDNode *register_nodes[RegisterCount];
// Tag for everything that is never written.
// Since it is never written, one tag works
llvm::MDNode *const_node;
llvm::MDNode *instruction_count_node;
llvm::MDNode *memory_node;
};

View file

@ -0,0 +1,48 @@
#include "common/logging/backend.h"
#include "common/logging/text_formatter.h"
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/mem_map.h"
#include "core/hle/kernel/memory.h"
#include "core/loader/loader.h"
#include "codegen.h"
#include <llvm/Support/CommandLine.h>
namespace cl = llvm::cl;
cl::opt<std::string> InputFilename(cl::Positional, cl::Required, cl::desc("<input rom filename>"));
cl::opt<std::string> OutputFilename(cl::Positional, cl::Required, cl::desc("<output object filename>"));
cl::opt<std::string> DebugFilename(cl::Positional, cl::Optional, cl::desc("<debug filename>"));
cl::opt<bool> Verify("verify", cl::desc("<verify>"), cl::init(false));
int main(int argc, const char *const *argv)
{
// Remove all llvm options
llvm::StringMap<cl::Option *>& options = cl::getRegisteredOptions();
for (auto i = options.begin(); i != options.end(); ++i)
{
if (i->getValue() != &InputFilename && i->getValue() != &OutputFilename && i->getValue() != &DebugFilename)
{
i->getValue()->setHiddenFlag(cl::Hidden);
}
}
cl::ParseCommandLineOptions(argc, argv);
auto input_rom = InputFilename.c_str();
auto output_object = OutputFilename.c_str();
auto output_debug = DebugFilename.getNumOccurrences() ? DebugFilename.c_str() : nullptr;
bool verify = Verify;
Core::Init();
Memory::Init();
auto load_result = Loader::LoadFile(input_rom);
if (Loader::ResultStatus::Success != load_result)
{
LOG_CRITICAL(BinaryTranslator, "Failed to load ROM (Error %i)!", load_result);
return -1;
}
CodeGen code_generator(output_object, output_debug, verify);
code_generator.Run();
}

View file

@ -19,6 +19,9 @@ link_directories(${GLFW_LIBRARY_DIRS})
add_executable(citra ${SRCS} ${HEADERS})
target_link_libraries(citra core video_core common)
target_link_libraries(citra ${GLFW_LIBRARIES} ${OPENGL_gl_LIBRARY} inih glad)
if(ENABLE_BINARY_TRANSLATION)
target_link_libraries(citra ${llvm_libs})
endif()
if (MSVC)
target_link_libraries(citra getopt)
endif()

View file

@ -83,6 +83,9 @@ target_link_libraries(citra-qt core video_core common qhexedit)
target_link_libraries(citra-qt ${OPENGL_gl_LIBRARY} ${CITRA_QT_LIBS})
target_link_libraries(citra-qt ${PLATFORM_LIBRARIES})
if(ENABLE_BINARY_TRANSLATION)
target_link_libraries(citra-qt ${llvm_libs})
endif()
if(${CMAKE_SYSTEM_NAME} MATCHES "Linux|FreeBSD|OpenBSD|NetBSD")
install(TARGETS citra-qt RUNTIME DESTINATION "${CMAKE_INSTALL_PREFIX}/bin")
endif()

View file

@ -58,7 +58,8 @@ namespace Log {
CLS(Render) \
SUB(Render, Software) \
SUB(Render, OpenGL) \
CLS(Loader)
CLS(Loader) \
CLS(BinaryTranslator)
// GetClassName is a macro defined by Windows.h, grrr...
const char* GetLogClassName(Class log_class) {

View file

@ -74,6 +74,7 @@ enum class Class : ClassType {
Render_Software, ///< Software renderer backend
Render_OpenGL, ///< OpenGL backend
Loader, ///< ROM loader
BinaryTranslator, ///< Binary translator
Count ///< Total number of logging classes
};

View file

@ -253,7 +253,17 @@ set(HEADERS
settings.h
system.h
)
if(ENABLE_BINARY_TRANSLATION)
set(SRCS
${SRCS}
binary_translation/BinaryTranslationLoader.cpp
)
set(HEADERS
${HEADERS}
mem_map.h
binary_translation/BinaryTranslationLoader.h
)
endif()
create_directory_groups(${SRCS} ${HEADERS})
add_library(core STATIC ${SRCS} ${HEADERS})

View file

@ -23,6 +23,10 @@
#include "core/arm/skyeye_common/armsupp.h"
#include "core/arm/skyeye_common/vfp/vfp.h"
#if ENABLE_BINARY_TRANSLATION
#include "core/binary_translation/BinaryTranslationLoader.h"
#endif
#include "core/gdbstub/gdbstub.h"
Common::Profiling::TimingCategory profile_execute("DynCom::Execute");
@ -36,7 +40,8 @@ enum {
CALL = (1 << 4),
RET = (1 << 5),
END_OF_PAGE = (1 << 6),
THUMB = (1 << 7)
THUMB = (1 << 7),
BINARY_TRANSLATED = (1 << 8)
};
#define RM BITS(sht_oper, 0, 3)
@ -3554,6 +3559,12 @@ static int InterpreterTranslate(ARMul_State* cpu, int& bb_start, u32 addr) {
translated:
phys_addr += inst_size;
#if ENABLE_BINARY_TRANSLATION
if (BinaryTranslationLoader::CanRun(phys_addr, cpu->TFlag))
{
inst_base->br = BINARY_TRANSLATED;
}
#endif
if ((phys_addr & 0xfff) == 0) {
inst_base->br = END_OF_PAGE;
}
@ -3585,6 +3596,10 @@ unsigned InterpreterMainLoop(ARMul_State* cpu) {
GDBStub::BreakpointAddress breakpoint_data;
#if ENABLE_BINARY_TRANSLATION
BinaryTranslationLoader::SetCpuState(cpu);
#endif
#undef RM
#undef RS
@ -3621,17 +3636,24 @@ unsigned InterpreterMainLoop(ARMul_State* cpu) {
// GCC and Clang have a C++ extension to support a lookup table of labels. Otherwise, fallback to a
// clunky switch statement.
#if ENABLE_BINARY_TRANSLATION
#define BINARY_TRANSLATION_VERIFY_CALLBACK BinaryTranslationLoader::VerifyCallback();
#else
#define BINARY_TRANSLATION_VERIFY_CALLBACK
#endif
#if defined __GNUC__ || defined __clang__
#define GOTO_NEXT_INST \
GDB_BP_CHECK; \
if (num_instrs >= cpu->NumInstrsToExecute) goto END; \
num_instrs++; \
BINARY_TRANSLATION_VERIFY_CALLBACK \
goto *InstLabel[inst_base->idx]
#else
#define GOTO_NEXT_INST \
GDB_BP_CHECK; \
if (num_instrs >= cpu->NumInstrsToExecute) goto END; \
num_instrs++; \
BINARY_TRANSLATION_VERIFY_CALLBACK \
switch(inst_base->idx) { \
case 0: goto VMLA_INST; \
case 1: goto VMLS_INST; \
@ -3905,6 +3927,9 @@ unsigned InterpreterMainLoop(ARMul_State* cpu) {
goto END;
}
}
#if ENABLE_BINARY_TRANSLATION
num_instrs = BinaryTranslationLoader::Run(num_instrs);
#endif
if (cpu->TFlag)
cpu->Reg[15] &= 0xfffffffe;

View file

@ -0,0 +1,262 @@
#include "BinaryTranslationLoader.h"
#include "core/arm/skyeye_common/armstate.h"
#include "core/arm/skyeye_common/arm_regformat.h"
#include "common/logging/log.h"
#include <llvm/Support/TargetSelect.h>
#include <llvm/ADT/STLExtras.h>
#include <llvm/Support/MemoryBuffer.h>
#include <llvm/Object/ObjectFile.h>
#include <llvm/ExecutionEngine/RuntimeDyld.h>
#include <llvm/ExecutionEngine/SectionMemoryManager.h>
#include <core/mem_map.h>
using namespace llvm;
bool g_enabled = false;
bool g_verify = false;
ARMul_State *g_state;
std::unique_ptr<SectionMemoryManager> g_memory_manager;
std::unique_ptr<RuntimeDyld> g_dyld;
std::unique_ptr<RuntimeDyld::LoadedObjectInfo> g_loaded_object_info;
void(*g_run_function)();
bool(*g_can_run_function)();
uint32_t *g_instruction_count;
// Used by the verifier
struct SavedState
{
SavedState() { }
SavedState(const ARMul_State &state)
{
memcpy(regs, &state.Reg[0], sizeof(regs));
memcpy(flags, &state.NFlag, sizeof(flags));
t_flag = state.TFlag;
}
void CopyTo(ARMul_State &state)
{
memcpy(&state.Reg[0], regs, sizeof(regs));
memcpy(&state.NFlag, flags, sizeof(flags));
t_flag = state.TFlag;
}
void SwapWith(ARMul_State &state)
{
SavedState arm_state = state;
std::swap(*this, arm_state);
arm_state.CopyTo(state);
}
void Print()
{
LOG_ERROR(BinaryTranslator, "%08x %08x %08x %08x %08x %08x %08x %08x",
regs[0], regs[1], regs[2], regs[3],
regs[4], regs[5], regs[6], regs[7]);
LOG_ERROR(BinaryTranslator, "%08x %08x %08x %08x %08x %08x %08x %08x",
regs[8], regs[9], regs[10], regs[11],
regs[12], regs[13], regs[14], regs[15]);
LOG_ERROR(BinaryTranslator, "%01x %01x %01x %01x %01x", flags[0], flags[1], flags[2], flags[3], t_flag);
}
u32 regs[16];
u32 flags[4];
u32 t_flag;
};
bool operator==(const SavedState& lhs, const SavedState& rhs)
{
return memcmp(&lhs, &rhs, sizeof(lhs)) == 0;
}
bool operator!=(const SavedState& lhs, const SavedState& rhs)
{
return memcmp(&lhs, &rhs, sizeof(lhs)) != 0;
}
bool g_have_saved_state; // Whether there is a copied state
SavedState g_state_copy;
SavedState g_state_copy_before;
void BinaryTranslationLoader::Load(FileUtil::IOFile& file)
{
if (offsetof(ARMul_State, ZFlag) - offsetof(ARMul_State, NFlag) != 4 ||
offsetof(ARMul_State, CFlag) - offsetof(ARMul_State, NFlag) != 8 ||
offsetof(ARMul_State, VFlag) - offsetof(ARMul_State, NFlag) != 12)
{
LOG_WARNING(Loader, "Flags are unordered, cannot run optimized file");
return;
}
InitializeNativeTarget();
g_memory_manager = make_unique<SectionMemoryManager>();
g_dyld = make_unique<RuntimeDyld>(*g_memory_manager.get(), *g_memory_manager.get());
auto size = file.GetSize();
auto buffer = make_unique<char[]>(size);
file.ReadBytes(buffer.get(), size);
if (!file.IsGood())
{
LOG_WARNING(Loader, "Cannot read optimized file");
return;
}
auto object_file = object::ObjectFile::createObjectFile(MemoryBufferRef(StringRef(buffer.get(), size), ""));
if (!object_file)
{
LOG_WARNING(Loader, "Cannot load optimized file");
return;
}
g_loaded_object_info = g_dyld->loadObject(*object_file->get());
if (g_dyld->hasError())
{
LOG_WARNING(Loader, "Cannot load optimized file, error %s", g_dyld->getErrorString().str().c_str());
return;
}
g_dyld->resolveRelocations();
g_dyld->registerEHFrames();
g_memory_manager->finalizeMemory();
g_run_function = static_cast<decltype(g_run_function)>((void*)g_dyld->getSymbol("Run").getAddress());
g_can_run_function = static_cast<decltype(g_can_run_function)>((void*)g_dyld->getSymbol("CanRun").getAddress());
auto verify_ptr = static_cast<bool*>((void*)g_dyld->getSymbol("Verify").getAddress());
g_instruction_count = static_cast<uint32_t *>((void*)g_dyld->getSymbol("InstructionCount").getAddress());
auto memory_read_32_ptr = static_cast<decltype(&Memory::Read32) *>((void*)g_dyld->getSymbol("Memory::Read32").getAddress());
auto memory_write_32_ptr = static_cast<decltype(&Memory::Write32) *>((void*)g_dyld->getSymbol("Memory::Write32").getAddress());
if (!g_run_function || !g_can_run_function || !verify_ptr || !g_instruction_count || !memory_read_32_ptr || !memory_write_32_ptr)
{
LOG_WARNING(Loader, "Cannot load optimized file, missing critical function");
return;
}
g_verify = *verify_ptr;
*memory_read_32_ptr = &Memory::Read32;
*memory_write_32_ptr = &Memory::Write32;
g_enabled = true;
LOG_INFO(Loader, "Binary translation enabled");
}
void BinaryTranslationLoader::SetCpuState(ARMul_State* state)
{
if (!g_enabled) return;
auto regs_ptr = static_cast<u32 **>((void*)g_dyld->getSymbol("Registers").getAddress());
auto flags_ptr = static_cast<u32 **>((void*)g_dyld->getSymbol("Flags").getAddress());
*regs_ptr = &state->Reg[0];
*flags_ptr = &state->NFlag;
g_have_saved_state = false;
g_state = state;
}
bool BinaryTranslationLoader::CanRun(bool specific_address)
{
if (!g_enabled) return false;
// Thumb not implemented
if (g_state->TFlag) return false;
if (specific_address)
if (!g_can_run_function()) return false;
return true;
}
bool BinaryTranslationLoader::CanRun(u32 pc, bool tflag)
{
if (!g_enabled) return false;
if (tflag) return false;
std::swap(g_state->Reg[15], pc);
auto result = g_can_run_function();
std::swap(g_state->Reg[15], pc);
return result;
}
uint32_t BinaryTranslationLoader::Run(uint32_t instruction_count)
{
// No need to check the PC, Run does it anyway
if (!CanRun(false)) return instruction_count;
// If verify is enabled, it will run opcodes
if (g_verify) return instruction_count;
return RunInternal(instruction_count);
}
uint32_t BinaryTranslationLoader::RunInternal(uint32_t instruction_count)
{
*g_instruction_count = instruction_count;
g_run_function();
g_state->TFlag = g_state->Reg[15] & 1;
if (g_state->TFlag)
g_state->Reg[15] &= 0xfffffffe;
else
g_state->Reg[15] &= 0xfffffffc;
return *g_instruction_count;
}
void Swap(void *a, void *b, size_t size)
{
auto a_char = (char *)a;
auto b_char = (char *)b;
for (auto i = 0; i < size; ++i)
{
std::swap(a_char[i], b_char[i]);
}
}
void BinaryTranslationLoader::VerifyCallback()
{
if (!g_enabled || !g_verify) return;
// Swap the PC and TFlag to the old state before checking if it can run
std::swap(g_state_copy.regs[15], g_state->Reg[15]);
std::swap(g_state_copy.t_flag, g_state->TFlag);
auto can_run = CanRun(true);
std::swap(g_state_copy.regs[15], g_state->Reg[15]);
std::swap(g_state_copy.t_flag, g_state->TFlag);
if (g_have_saved_state && can_run)
{
// An opcode is finished, simulate it
// Copy the state before
g_state_copy_before = g_state_copy;
// Swap to the state before the opcode
g_state_copy.SwapWith(*g_state);
// Run the opcode
RunInternal(0);
// Test
auto current_as_saved_state = SavedState(*g_state);
if (current_as_saved_state != g_state_copy)
{
LOG_ERROR(BinaryTranslator, "Verify failed");
LOG_ERROR(BinaryTranslator, "Regs Before");
g_state_copy_before.Print();
LOG_ERROR(BinaryTranslator, "Regs OK");
g_state_copy.Print();
LOG_ERROR(BinaryTranslator, "Regs not OK");
current_as_saved_state.Print();
// Don't spam
g_enabled = false;
// Make sure it has a valid state to continue to run
g_state_copy.CopyTo(*g_state);
}
}
else
{
// If this opcode is not translated or there is no saved state, just save the state and continue
g_state_copy = *g_state;
g_have_saved_state = true;
}
}

View file

@ -0,0 +1,22 @@
#include "common/file_util.h"
#include <memory>
struct ARMul_State;
class BinaryTranslationLoader
{
public:
static void Load(FileUtil::IOFile& file);
static void SetCpuState(ARMul_State *state);
// Checks whether the cpu state can be run
// If specific_address, checks the specific PC too
static bool CanRun(bool specific_address);
// Checks whether the cpu state can run the specific address at the specific mode
static bool CanRun(u32 pc, bool tflag);
// Runs the state provided at SetCpuState.
// Returns instruction_count + number of instructions executed
static uint32_t Run(uint32_t instruction_count);
// Link between Run and VerifyCallback
static uint32_t RunInternal(uint32_t instruction_count);
static void VerifyCallback();
};

View file

@ -14,6 +14,7 @@
#include "core/loader/elf.h"
#include "core/loader/ncch.h"
#include "core/memory.h"
#include "core/loader/loader.h"
#include "3dsx.h"
@ -226,6 +227,11 @@ static THREEDSX_Error Load3DSXFile(FileUtil::IOFile& file, u32 base_addr, Shared
code_set->entrypoint = code_set->code.addr;
code_set->memory = std::make_shared<std::vector<u8>>(std::move(program_image));
Loader::ROMCodeStart = code_set->code.addr;
Loader::ROMCodeSize = code_set->code.size;
Loader::ROMReadOnlyDataStart = code_set->rodata.addr;
Loader::ROMReadOnlyDataSize = code_set->rodata.size;
LOG_DEBUG(Loader, "code size: 0x%X", loadinfo.seg_sizes[0]);
LOG_DEBUG(Loader, "rodata size: 0x%X", loadinfo.seg_sizes[1]);
LOG_DEBUG(Loader, "data size: 0x%X (including 0x%X of bss)", loadinfo.seg_sizes[2], hdr.bss_size);

View file

@ -15,6 +15,9 @@
#include "core/loader/3dsx.h"
#include "core/loader/elf.h"
#include "core/loader/ncch.h"
#if ENABLE_BINARY_TRANSLATION
#include "core/binary_translation/BinaryTranslationLoader.h"
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
@ -26,6 +29,11 @@ const std::initializer_list<Kernel::AddressMapping> default_address_mappings = {
{ 0x1F000000, 0x600000, false }, // entire VRAM
};
u32 ROMCodeStart;
u32 ROMCodeSize;
u32 ROMReadOnlyDataStart;
u32 ROMReadOnlyDataSize;
FileType IdentifyFile(FileUtil::IOFile& file) {
FileType type;
@ -92,6 +100,10 @@ const char* GetFileTypeString(FileType type) {
}
ResultStatus LoadFile(const std::string& filename) {
ROMCodeStart = 0;
ROMCodeSize = 0;
ROMReadOnlyDataStart = 0;
ROMReadOnlyDataSize = 0;
FileUtil::IOFile file(filename, "rb");
if (!file.IsOpen()) {
LOG_ERROR(Loader, "Failed to load file %s", filename.c_str());
@ -112,6 +124,7 @@ ResultStatus LoadFile(const std::string& filename) {
LOG_INFO(Loader, "Loading file %s as %s...", filename.c_str(), GetFileTypeString(type));
ResultStatus status = ResultStatus::Error;
switch (type) {
//3DSX file format...
@ -121,14 +134,15 @@ ResultStatus LoadFile(const std::string& filename) {
// Load application and RomFS
if (ResultStatus::Success == app_loader.Load()) {
Service::FS::RegisterArchiveType(Common::make_unique<FileSys::ArchiveFactory_RomFS>(app_loader), Service::FS::ArchiveIdCode::RomFS);
return ResultStatus::Success;
status = ResultStatus::Success;
}
break;
}
// Standard ELF file format...
case FileType::ELF:
return AppLoader_ELF(std::move(file), filename_filename).Load();
status = AppLoader_ELF(std::move(file), filename_filename).Load();
break;
// NCCH/NCSD container formats...
case FileType::CXI:
@ -139,14 +153,15 @@ ResultStatus LoadFile(const std::string& filename) {
// Load application and RomFS
if (ResultStatus::Success == app_loader.Load()) {
Service::FS::RegisterArchiveType(Common::make_unique<FileSys::ArchiveFactory_RomFS>(app_loader), Service::FS::ArchiveIdCode::RomFS);
return ResultStatus::Success;
status = ResultStatus::Success;
}
break;
}
// CIA file format...
case FileType::CIA:
return ResultStatus::ErrorNotImplemented;
status = ResultStatus::ErrorNotImplemented;
break;
// Error occurred durring IdentifyFile...
case FileType::Error:
@ -155,10 +170,24 @@ ResultStatus LoadFile(const std::string& filename) {
case FileType::Unknown:
{
LOG_CRITICAL(Loader, "File %s is of unknown type.", filename.c_str());
return ResultStatus::ErrorInvalidFormat;
status = ResultStatus::ErrorInvalidFormat;
}
}
return ResultStatus::Error;
#if ENABLE_BINARY_TRANSLATION
if (status == ResultStatus::Success)
{
std::unique_ptr<FileUtil::IOFile> optimized_file(new FileUtil::IOFile(filename + ".obj", "rb"));
if (!optimized_file->IsOpen())
{
LOG_WARNING(Loader, "Failed to load optimized file %s.obj", filename.c_str());
}
else
{
BinaryTranslationLoader::Load(*optimized_file);
}
}
#endif
return status;
}
} // namespace Loader

View file

@ -156,4 +156,12 @@ extern const std::initializer_list<Kernel::AddressMapping> default_address_mappi
*/
ResultStatus LoadFile(const std::string& filename);
/*
* Infomation about ROM
*/
extern u32 ROMCodeStart;
extern u32 ROMCodeSize;
extern u32 ROMReadOnlyDataStart;
extern u32 ROMReadOnlyDataSize;
} // namespace

View file

@ -165,6 +165,10 @@ ResultStatus AppLoader_NCCH::LoadExec() {
s32 priority = exheader_header.arm11_system_local_caps.priority;
u32 stack_size = exheader_header.codeset_info.stack_size;
Kernel::g_current_process->Run(priority, stack_size);
Loader::ROMCodeStart = exheader_header.codeset_info.text.address;
Loader::ROMCodeSize = exheader_header.codeset_info.text.num_max_pages * Memory::PAGE_SIZE;
Loader::ROMReadOnlyDataStart = exheader_header.codeset_info.ro.address;
Loader::ROMReadOnlyDataSize = exheader_header.codeset_info.ro.num_max_pages * Memory::PAGE_SIZE;
return ResultStatus::Success;
}
return ResultStatus::Error;

1
src/core/mem_map.h Normal file
View file

@ -0,0 +1 @@
#include "memory.h"