From 531d2804619f3456c141976ed5bbe841492a3dc5 Mon Sep 17 00:00:00 2001 From: GPUCode Date: Sun, 16 Jul 2023 03:02:55 +0300 Subject: [PATCH] renderer_software: Multi-thread processing * Doubles the performance in most cases --- .../renderer_software/sw_rasterizer.cpp | 305 +++++++++--------- .../renderer_software/sw_rasterizer.h | 11 +- 2 files changed, 165 insertions(+), 151 deletions(-) diff --git a/src/video_core/renderer_software/sw_rasterizer.cpp b/src/video_core/renderer_software/sw_rasterizer.cpp index 52d172e6e..62bdc7f1d 100644 --- a/src/video_core/renderer_software/sw_rasterizer.cpp +++ b/src/video_core/renderer_software/sw_rasterizer.cpp @@ -95,8 +95,14 @@ private: } // Anonymous namespace +// Kirby Blowout Blast relies on the combiner output of a previous draw +// in order to render the sky correctly. +static thread_local Common::Vec4 combiner_output{}; + RasterizerSoftware::RasterizerSoftware(Memory::MemorySystem& memory_) - : memory{memory_}, state{Pica::g_state}, regs{state.regs}, fb{memory, regs.framebuffer} {} + : memory{memory_}, state{Pica::g_state}, regs{state.regs}, + num_sw_threads{std::max(std::thread::hardware_concurrency(), 2U)}, + sw_workers{num_sw_threads, "SwRenderer workers"}, fb{memory, regs.framebuffer} {} void RasterizerSoftware::AddTriangle(const Pica::Shader::OutputVertex& v0, const Pica::Shader::OutputVertex& v1, @@ -295,161 +301,171 @@ void RasterizerSoftware::ProcessTriangle(const Vertex& v0, const Vertex& v1, con // Enter rasterization loop, starting at the center of the topleft bounding box corner. // TODO: Not sure if looping through x first might be faster for (u16 y = min_y + 8; y < max_y; y += 0x10) { - for (u16 x = min_x + 8; x < max_x; x += 0x10) { - // Do not process the pixel if it's inside the scissor box and the scissor mode is set - // to Exclude. - if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Exclude) { - if (x >= scissor_x1 && x < scissor_x2 && y >= scissor_y1 && y < scissor_y2) { + const auto process_scanline = [&, y] { + for (u16 x = min_x + 8; x < max_x; x += 0x10) { + // Do not process the pixel if it's inside the scissor box and the scissor mode is + // set to Exclude. + if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Exclude) { + if (x >= scissor_x1 && x < scissor_x2 && y >= scissor_y1 && y < scissor_y2) { + continue; + } + } + + // Calculate the barycentric coordinates w0, w1 and w2 + const s32 w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y}); + const s32 w1 = bias1 + SignedArea(vtxpos[2].xy(), vtxpos[0].xy(), {x, y}); + const s32 w2 = bias2 + SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), {x, y}); + const s32 wsum = w0 + w1 + w2; + + // If current pixel is not covered by the current primitive + if (w0 < 0 || w1 < 0 || w2 < 0) { continue; } - } - // Calculate the barycentric coordinates w0, w1 and w2 - const s32 w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y}); - const s32 w1 = bias1 + SignedArea(vtxpos[2].xy(), vtxpos[0].xy(), {x, y}); - const s32 w2 = bias2 + SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), {x, y}); - const s32 wsum = w0 + w1 + w2; + const auto baricentric_coordinates = Common::MakeVec( + f24::FromFloat32(static_cast(w0)), f24::FromFloat32(static_cast(w1)), + f24::FromFloat32(static_cast(w2))); + const f24 interpolated_w_inverse = + f24::One() / Common::Dot(w_inverse, baricentric_coordinates); - // If current pixel is not covered by the current primitive - if (w0 < 0 || w1 < 0 || w2 < 0) { - continue; - } + // interpolated_z = z / w + const float interpolated_z_over_w = + (v0.screenpos[2].ToFloat32() * w0 + v1.screenpos[2].ToFloat32() * w1 + + v2.screenpos[2].ToFloat32() * w2) / + wsum; - const auto baricentric_coordinates = Common::MakeVec( - f24::FromFloat32(static_cast(w0)), f24::FromFloat32(static_cast(w1)), - f24::FromFloat32(static_cast(w2))); - const f24 interpolated_w_inverse = - f24::One() / Common::Dot(w_inverse, baricentric_coordinates); + // Not fully accurate. About 3 bits in precision are missing. + // Z-Buffer (z / w * scale + offset) + const float depth_scale = + f24::FromRaw(regs.rasterizer.viewport_depth_range).ToFloat32(); + const float depth_offset = + f24::FromRaw(regs.rasterizer.viewport_depth_near_plane).ToFloat32(); + float depth = interpolated_z_over_w * depth_scale + depth_offset; - // interpolated_z = z / w - const float interpolated_z_over_w = - (v0.screenpos[2].ToFloat32() * w0 + v1.screenpos[2].ToFloat32() * w1 + - v2.screenpos[2].ToFloat32() * w2) / - wsum; + // Potentially switch to W-Buffer + if (regs.rasterizer.depthmap_enable == + Pica::RasterizerRegs::DepthBuffering::WBuffering) { + // W-Buffer (z * scale + w * offset = (z / w * scale + offset) * w) + depth *= interpolated_w_inverse.ToFloat32() * wsum; + } - // Not fully accurate. About 3 bits in precision are missing. - // Z-Buffer (z / w * scale + offset) - const float depth_scale = - f24::FromRaw(regs.rasterizer.viewport_depth_range).ToFloat32(); - const float depth_offset = - f24::FromRaw(regs.rasterizer.viewport_depth_near_plane).ToFloat32(); - float depth = interpolated_z_over_w * depth_scale + depth_offset; + // Clamp the result + depth = std::clamp(depth, 0.0f, 1.0f); - // Potentially switch to W-Buffer - if (regs.rasterizer.depthmap_enable == - Pica::RasterizerRegs::DepthBuffering::WBuffering) { - // W-Buffer (z * scale + w * offset = (z / w * scale + offset) * w) - depth *= interpolated_w_inverse.ToFloat32() * wsum; - } - - // Clamp the result - depth = std::clamp(depth, 0.0f, 1.0f); - - /** - * Perspective correct attribute interpolation: - * Attribute values cannot be calculated by simple linear interpolation since - * they are not linear in screen space. For example, when interpolating a - * texture coordinate across two vertices, something simple like - * u = (u0*w0 + u1*w1)/(w0+w1) - * will not work. However, the attribute value divided by the - * clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear - * in screenspace. Hence, we can linearly interpolate these two independently and - * calculate the interpolated attribute by dividing the results. - * I.e. - * u_over_w = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1) - * one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1) - * u = u_over_w / one_over_w - * - * The generalization to three vertices is straightforward in baricentric coordinates. - **/ - const auto get_interpolated_attribute = [&](f24 attr0, f24 attr1, f24 attr2) { - auto attr_over_w = Common::MakeVec(attr0, attr1, attr2); - f24 interpolated_attr_over_w = Common::Dot(attr_over_w, baricentric_coordinates); - return interpolated_attr_over_w * interpolated_w_inverse; - }; - - const Common::Vec4 primary_color{ - static_cast( - round(get_interpolated_attribute(v0.color.r(), v1.color.r(), v2.color.r()) - .ToFloat32() * - 255)), - static_cast( - round(get_interpolated_attribute(v0.color.g(), v1.color.g(), v2.color.g()) - .ToFloat32() * - 255)), - static_cast( - round(get_interpolated_attribute(v0.color.b(), v1.color.b(), v2.color.b()) - .ToFloat32() * - 255)), - static_cast( - round(get_interpolated_attribute(v0.color.a(), v1.color.a(), v2.color.a()) - .ToFloat32() * - 255)), - }; - - std::array, 3> uv; - uv[0].u() = get_interpolated_attribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u()); - uv[0].v() = get_interpolated_attribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v()); - uv[1].u() = get_interpolated_attribute(v0.tc1.u(), v1.tc1.u(), v2.tc1.u()); - uv[1].v() = get_interpolated_attribute(v0.tc1.v(), v1.tc1.v(), v2.tc1.v()); - uv[2].u() = get_interpolated_attribute(v0.tc2.u(), v1.tc2.u(), v2.tc2.u()); - uv[2].v() = get_interpolated_attribute(v0.tc2.v(), v1.tc2.v(), v2.tc2.v()); - - // Sample bound texture units. - const f24 tc0_w = get_interpolated_attribute(v0.tc0_w, v1.tc0_w, v2.tc0_w); - const auto texture_color = TextureColor(uv, textures, tc0_w); - - Common::Vec4 primary_fragment_color = {0, 0, 0, 0}; - Common::Vec4 secondary_fragment_color = {0, 0, 0, 0}; - - if (!regs.lighting.disable) { - const auto normquat = - Common::Quaternion{ - {get_interpolated_attribute(v0.quat.x, v1.quat.x, v2.quat.x).ToFloat32(), - get_interpolated_attribute(v0.quat.y, v1.quat.y, v2.quat.y).ToFloat32(), - get_interpolated_attribute(v0.quat.z, v1.quat.z, v2.quat.z).ToFloat32()}, - get_interpolated_attribute(v0.quat.w, v1.quat.w, v2.quat.w).ToFloat32(), - } - .Normalized(); - - const Common::Vec3f view{ - get_interpolated_attribute(v0.view.x, v1.view.x, v2.view.x).ToFloat32(), - get_interpolated_attribute(v0.view.y, v1.view.y, v2.view.y).ToFloat32(), - get_interpolated_attribute(v0.view.z, v1.view.z, v2.view.z).ToFloat32(), + /** + * Perspective correct attribute interpolation: + * Attribute values cannot be calculated by simple linear interpolation since + * they are not linear in screen space. For example, when interpolating a + * texture coordinate across two vertices, something simple like + * u = (u0*w0 + u1*w1)/(w0+w1) + * will not work. However, the attribute value divided by the + * clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear + * in screenspace. Hence, we can linearly interpolate these two independently and + * calculate the interpolated attribute by dividing the results. + * I.e. + * u_over_w = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1) + * one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1) + * u = u_over_w / one_over_w + * + * The generalization to three vertices is straightforward in baricentric + *coordinates. + **/ + const auto get_interpolated_attribute = [&](f24 attr0, f24 attr1, f24 attr2) { + auto attr_over_w = Common::MakeVec(attr0, attr1, attr2); + f24 interpolated_attr_over_w = + Common::Dot(attr_over_w, baricentric_coordinates); + return interpolated_attr_over_w * interpolated_w_inverse; }; - std::tie(primary_fragment_color, secondary_fragment_color) = ComputeFragmentsColors( - regs.lighting, state.lighting, normquat, view, texture_color); - } - // Write the TEV stages. - WriteTevConfig(texture_color, tev_stages, primary_color, primary_fragment_color, - secondary_fragment_color); + const Common::Vec4 primary_color{ + static_cast( + round(get_interpolated_attribute(v0.color.r(), v1.color.r(), v2.color.r()) + .ToFloat32() * + 255)), + static_cast( + round(get_interpolated_attribute(v0.color.g(), v1.color.g(), v2.color.g()) + .ToFloat32() * + 255)), + static_cast( + round(get_interpolated_attribute(v0.color.b(), v1.color.b(), v2.color.b()) + .ToFloat32() * + 255)), + static_cast( + round(get_interpolated_attribute(v0.color.a(), v1.color.a(), v2.color.a()) + .ToFloat32() * + 255)), + }; - const auto& output_merger = regs.framebuffer.output_merger; - if (output_merger.fragment_operation_mode == - FramebufferRegs::FragmentOperationMode::Shadow) { - u32 depth_int = static_cast(depth * 0xFFFFFF); - // Use green color as the shadow intensity - u8 stencil = combiner_output.y; - fb.DrawShadowMapPixel(x >> 4, y >> 4, depth_int, stencil); - // Skip the normal output merger pipeline if it is in shadow mode - continue; - } + std::array, 3> uv; + uv[0].u() = get_interpolated_attribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u()); + uv[0].v() = get_interpolated_attribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v()); + uv[1].u() = get_interpolated_attribute(v0.tc1.u(), v1.tc1.u(), v2.tc1.u()); + uv[1].v() = get_interpolated_attribute(v0.tc1.v(), v1.tc1.v(), v2.tc1.v()); + uv[2].u() = get_interpolated_attribute(v0.tc2.u(), v1.tc2.u(), v2.tc2.u()); + uv[2].v() = get_interpolated_attribute(v0.tc2.v(), v1.tc2.v(), v2.tc2.v()); - // Does alpha testing happen before or after stencil? - if (!DoAlphaTest(combiner_output.a())) { - continue; + // Sample bound texture units. + const f24 tc0_w = get_interpolated_attribute(v0.tc0_w, v1.tc0_w, v2.tc0_w); + const auto texture_color = TextureColor(uv, textures, tc0_w); + + Common::Vec4 primary_fragment_color = {0, 0, 0, 0}; + Common::Vec4 secondary_fragment_color = {0, 0, 0, 0}; + + if (!regs.lighting.disable) { + const auto normquat = + Common::Quaternion{ + {get_interpolated_attribute(v0.quat.x, v1.quat.x, v2.quat.x) + .ToFloat32(), + get_interpolated_attribute(v0.quat.y, v1.quat.y, v2.quat.y) + .ToFloat32(), + get_interpolated_attribute(v0.quat.z, v1.quat.z, v2.quat.z) + .ToFloat32()}, + get_interpolated_attribute(v0.quat.w, v1.quat.w, v2.quat.w).ToFloat32(), + } + .Normalized(); + + const Common::Vec3f view{ + get_interpolated_attribute(v0.view.x, v1.view.x, v2.view.x).ToFloat32(), + get_interpolated_attribute(v0.view.y, v1.view.y, v2.view.y).ToFloat32(), + get_interpolated_attribute(v0.view.z, v1.view.z, v2.view.z).ToFloat32(), + }; + std::tie(primary_fragment_color, secondary_fragment_color) = + ComputeFragmentsColors(regs.lighting, state.lighting, normquat, view, + texture_color); + } + + // Write the TEV stages. + WriteTevConfig(texture_color, tev_stages, primary_color, primary_fragment_color, + secondary_fragment_color); + + const auto& output_merger = regs.framebuffer.output_merger; + if (output_merger.fragment_operation_mode == + FramebufferRegs::FragmentOperationMode::Shadow) { + u32 depth_int = static_cast(depth * 0xFFFFFF); + // Use green color as the shadow intensity + u8 stencil = combiner_output.y; + fb.DrawShadowMapPixel(x >> 4, y >> 4, depth_int, stencil); + // Skip the normal output merger pipeline if it is in shadow mode + continue; + } + + // Does alpha testing happen before or after stencil? + if (!DoAlphaTest(combiner_output.a())) { + continue; + } + WriteFog(depth); + if (!DoDepthStencilTest(x, y, depth)) { + continue; + } + const auto result = PixelColor(x, y); + if (regs.framebuffer.framebuffer.allow_color_write != 0) { + fb.DrawPixel(x >> 4, y >> 4, result); + } } - WriteFog(combiner_output, depth); - if (!DoDepthStencilTest(x, y, depth)) { - continue; - } - const auto result = PixelColor(x, y, combiner_output); - if (regs.framebuffer.framebuffer.allow_color_write != 0) { - fb.DrawPixel(x >> 4, y >> 4, result); - } - } + }; + sw_workers.QueueWork(std::move(process_scanline)); } + sw_workers.WaitForRequests(); } std::array, 4> RasterizerSoftware::TextureColor( @@ -572,8 +588,7 @@ std::array, 4> RasterizerSoftware::TextureColor( return texture_color; } -Common::Vec4 RasterizerSoftware::PixelColor(u16 x, u16 y, - Common::Vec4& combiner_output) const { +Common::Vec4 RasterizerSoftware::PixelColor(u16 x, u16 y) const { const auto dest = fb.GetPixel(x >> 4, y >> 4); Common::Vec4 blend_output = combiner_output; @@ -768,7 +783,7 @@ void RasterizerSoftware::WriteTevConfig( } } -void RasterizerSoftware::WriteFog(Common::Vec4& combiner_output, float depth) const { +void RasterizerSoftware::WriteFog(float depth) const { /** * Apply fog combiner. Not fully accurate. We'd have to know what data type is used to * store the depth etc. Using float for now until we know more about Pica datatypes. diff --git a/src/video_core/renderer_software/sw_rasterizer.h b/src/video_core/renderer_software/sw_rasterizer.h index 919d862fc..28b68263d 100644 --- a/src/video_core/renderer_software/sw_rasterizer.h +++ b/src/video_core/renderer_software/sw_rasterizer.h @@ -5,7 +5,7 @@ #pragma once #include - +#include "common/thread_worker.h" #include "video_core/rasterizer_interface.h" #include "video_core/regs_texturing.h" #include "video_core/renderer_software/sw_clipper.h" @@ -52,7 +52,7 @@ private: std::span textures, f24 tc0_w) const; /// Returns the final pixel color with blending or logic ops applied. - Common::Vec4 PixelColor(u16 x, u16 y, Common::Vec4& combiner_output) const; + Common::Vec4 PixelColor(u16 x, u16 y) const; /// Emulates the TEV configuration and returns the combiner output. void WriteTevConfig(std::span, 4> texture_color, @@ -61,7 +61,7 @@ private: Common::Vec4 secondary_fragment_color); /// Blends fog to the combiner output if enabled. - void WriteFog(Common::Vec4& combiner_output, float depth) const; + void WriteFog(float depth) const; /// Performs the alpha test. Returns false if the test failed. bool DoAlphaTest(u8 alpha) const; @@ -73,10 +73,9 @@ private: Memory::MemorySystem& memory; Pica::State& state; const Pica::Regs& regs; + size_t num_sw_threads; + Common::ThreadWorker sw_workers; Framebuffer fb; - // Kirby Blowout Blast relies on the combiner output of a previous draw - // in order to render the sky correctly. - Common::Vec4 combiner_output{}; }; } // namespace SwRenderer