DSP/Audio: Add documenation, cleanup, fix a weird crinkly audio bug, fix truncated ADPCM decoding

This commit is contained in:
MerryMage 2016-01-25 13:27:39 +00:00 committed by Sean Maas
parent 09200c85cf
commit c25b85e18f
7 changed files with 455 additions and 415 deletions

View file

@ -11,7 +11,7 @@ set(SRCS
arm/skyeye_common/vfp/vfpdouble.cpp
arm/skyeye_common/vfp/vfpinstr.cpp
arm/skyeye_common/vfp/vfpsingle.cpp
audio/stream.cpp
audio/audio.cpp
core.cpp
core_timing.cpp
file_sys/archive_backend.cpp
@ -138,7 +138,7 @@ set(HEADERS
arm/skyeye_common/vfp/asm_vfp.h
arm/skyeye_common/vfp/vfp.h
arm/skyeye_common/vfp/vfp_helper.h
audio/stream.h
audio/audio.h
core.h
core_timing.h
file_sys/archive_backend.h

339
src/core/audio/audio.cpp Normal file
View file

@ -0,0 +1,339 @@
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"
#include "common/logging/log.h"
#include "core/audio/audio.h"
#include <algorithm>
#include <array>
#include <queue>
namespace Audio {
static const int BASE_SAMPLE_RATE = 22050;
struct Buffer {
u16 id; ///< buffer_id that userland gives us
ALuint buffer;
bool is_looping;
bool operator < (const Buffer& other) const {
// We want things with lower id to appear first, unless we have wraparound.
// priority_queue puts a before b when b < a.
// Should perhaps be a instead.
if ((other.id - id) > 1000) return true;
if ((id - other.id) > 1000) return false;
return id > other.id;
}
};
struct AdpcmState {
// Two historical samples from previous processed buffer
s16 yn1; ///< y[n-1]
s16 yn2; ///< y[n-2]
};
// GC-ADPCM with scale factor and variable coefficients.
// Frames are 8 bytes long containing 14 samples each.
// Samples are 4 bits (one nybble) long.
std::vector<s16> DecodeADPCM(const u8 * const data, const size_t sample_count, const std::array<s16, 16>& adpcm_coeff, AdpcmState& state) {
const size_t FRAME_LEN = 8;
const size_t SAMPLES_PER_FRAME = 14;
const static int SIGNED_NYBBLES[16] = { 0,1,2,3,4,5,6,7,-8,-7,-6,-5,-4,-3,-2,-1 };
std::vector<s16> ret(sample_count);
int yn1 = 0, yn2 = 0;// state.yn1, yn2 = state.yn2;
const int NUM_FRAMES = (sample_count + (SAMPLES_PER_FRAME-1)) / SAMPLES_PER_FRAME; // Round up.
for (int frameno = 0; frameno < NUM_FRAMES; frameno++) {
int frame_header = data[frameno * FRAME_LEN];
int scale = 1 << (frame_header & 0xF);
int idx = (frame_header >> 4) & 0x7;
// Coefficients are fixed point with 11 bits fractional part.
int coef1 = adpcm_coeff[idx * 2 + 0];
int coef2 = adpcm_coeff[idx * 2 + 1];
auto process_nybble = [&](int nybble) -> s16 {
int xn = nybble * scale;
// We first transform everything into 11 bit fixed point, perform the second order digital filter, then transform back.
// 0x400 == 0.5 in 11 bit fixed point.
// Filter: y[n] = x[n] + 0.5 + c1 * y[n-1] + c2 * y[n-2]
int val = ((xn << 11) + 0x400 + coef1 * yn1 + coef2 * yn2) >> 11;
// Clamp to output range.
if (val >= 32767) val = 32767;
if (val <= -32768) val = -32768;
// Advance output feedback.
yn2 = yn1;
yn1 = val;
return (s16)val;
};
int outputi = frameno * SAMPLES_PER_FRAME;
int datai = frameno * FRAME_LEN + 1;
for (int i = 0; i < SAMPLES_PER_FRAME && outputi < sample_count; i += 2) {
ret[outputi++] = process_nybble(SIGNED_NYBBLES[data[datai] & 0xF]);
ret[outputi++] = process_nybble(SIGNED_NYBBLES[data[datai] >> 4]);
datai++;
}
}
state.yn1 = yn1;
state.yn2 = yn2;
return ret;
}
struct OutputChannel {
ALuint source; ///< Each channel has it's own output, we lean on OpenAL to do our mixing.
// Configuration
int mono_or_stereo; ///< Value from userland. 1 == mono, 2 == stereo, other == ???
Format format;
bool enabled; ///< Userland wants us to remind them we have enabled this channel.
// Buffer management
std::priority_queue<Buffer> queue; ///< Things we have gotten from userland we haven't queued onto `source` yet.
std::queue<Buffer> playing; ///< Things we have queued onto `source`.
u16 last_bufid; ///< Userland wants us to report back what was the thing we last played.
// For ADPCM decoding use.
std::array<s16, 16> adpcm_coeffs;
AdpcmState adpcm_state;
};
OutputChannel chans[24];
int InitAL() {
ALCdevice *device = alcOpenDevice(nullptr);
if (!device) {
LOG_CRITICAL(Audio, "Could not open a device!");
return 1;
}
ALCcontext *ctx = alcCreateContext(device, nullptr);
if (ctx == nullptr || alcMakeContextCurrent(ctx) == ALC_FALSE) {
if (ctx != nullptr) {
alcDestroyContext(ctx);
}
alcCloseDevice(device);
LOG_CRITICAL(Audio, "Could not set a context!");
return 1;
}
LOG_INFO(Audio, "Audio output is on \"%s\"", alcGetString(device, ALC_DEVICE_SPECIFIER));
return 0;
}
ALCint dev_rate; ///< Native sample rate of our output device
std::array<u8, 10000> silence; ///< Some silence, used if an audio error occurs
void Init() {
InitAL();
ALCdevice *device = alcGetContextsDevice(alcGetCurrentContext());
alcGetIntegerv(device, ALC_FREQUENCY, 1, &dev_rate);
if (alcGetError(device) != ALC_NO_ERROR) {
LOG_CRITICAL(Audio, "Failed to get device sample rate");
}
LOG_INFO(Audio, "Device Frequency: %i", dev_rate);
for (int i = 0; i < 24; i++) {
alGenSources(1, &chans[i].source);
if (alGetError() != AL_NO_ERROR) {
LOG_CRITICAL(Audio, "Channel %i: Failed to setup sound source", i);
}
}
silence.fill(0);
}
void Shutdown() {
ALCcontext *ctx = alcGetCurrentContext();
if (ctx == nullptr) {
return;
}
ALCdevice* dev = alcGetContextsDevice(ctx);
for (int i = 0; i < 24; i++) {
alDeleteSources(1, &chans[i].source);
while (!chans[i].queue.empty()) {
alDeleteBuffers(1, &chans[i].queue.top().buffer);
chans[i].queue.pop();
}
while (!chans[i].playing.empty()) {
alDeleteBuffers(1, &chans[i].playing.front().buffer);
chans[i].playing.pop();
}
}
alcMakeContextCurrent(nullptr);
alcDestroyContext(ctx);
alcCloseDevice(dev);
}
void UpdateFormat(int chanid, int mono_or_stereo, Format format) {
chans[chanid].mono_or_stereo = mono_or_stereo;
chans[chanid].format = format;
}
void UpdateAdpcm(int chanid, s16 coeffs[16]) {
LOG_DEBUG(Audio, "Channel %i: ADPCM Coeffs updated", chanid);
std::copy(coeffs, coeffs+16, std::begin(chans[chanid].adpcm_coeffs));
}
void EnqueueBuffer(int chanid, u16 buffer_id, void* data, int sample_count, bool is_looping) {
LOG_DEBUG(Audio, "Channel %i: Buffer %i: Enqueued (size %i)", chanid, buffer_id, sample_count);
if (is_looping) {
LOG_WARNING(Audio, "Channel %i: Buffer %i: Looped buffers are unimplemented", chanid, buffer_id);
}
ALuint b;
alGenBuffers(1, &b);
switch(chans[chanid].format) {
case FORMAT_PCM16:
switch (chans[chanid].mono_or_stereo) {
case 2:
alBufferData(b, AL_FORMAT_STEREO16, data, sample_count * 4, BASE_SAMPLE_RATE);
break;
case 1:
default:
alBufferData(b, AL_FORMAT_MONO16, data, sample_count * 2, BASE_SAMPLE_RATE);
break;
}
if (alGetError() != AL_NO_ERROR) goto do_silence;
break;
case FORMAT_PCM8:
switch (chans[chanid].mono_or_stereo) {
case 2:
alBufferData(b, AL_FORMAT_STEREO8, data, sample_count * 2, BASE_SAMPLE_RATE);
break;
case 1:
default:
alBufferData(b, AL_FORMAT_MONO8, data, sample_count * 1, BASE_SAMPLE_RATE);
break;
}
if (alGetError() != AL_NO_ERROR) goto do_silence;
break;
case FORMAT_ADPCM: {
if (chans[chanid].mono_or_stereo != 1) {
LOG_ERROR(Audio, "Channel %i: Buffer %i: Being fed non-mono ADPCM (size: %i samples)", chanid, buffer_id, sample_count);
}
std::vector<s16> decoded = DecodeADPCM((u8*)data, sample_count, chans[chanid].adpcm_coeffs, chans[chanid].adpcm_state);
alBufferData(b, AL_FORMAT_STEREO16, decoded.data(), decoded.size() * 2, BASE_SAMPLE_RATE);
if (alGetError() != AL_NO_ERROR) goto do_silence;
break;
}
default:
LOG_ERROR(Audio, "Channel %i: Buffer %i: Unrecognised audio format (size: %i samples)", chanid, buffer_id, sample_count);
do_silence:
if (alGetError() != AL_NO_ERROR) {
LOG_CRITICAL(Audio, "Channel %i: Buffer %i: OpenAL says \"%s\"", chanid, buffer_id, alGetString(alGetError()));
}
alBufferData(b, AL_FORMAT_MONO8, silence.data(), silence.size(), BASE_SAMPLE_RATE);
if (alGetError() != AL_NO_ERROR) {
LOG_CRITICAL(Audio, "Channel %i: Failed to init silence buffer!!! (%s)", chanid, alGetString(alGetError()));
}
break;
}
chans[chanid].queue.emplace( Buffer { buffer_id, b, is_looping });
if (chans[chanid].queue.size() > 10) {
LOG_ERROR(Audio, "We have far far too many buffers enqueued on channel %i (%i of them)", chanid, chans[chanid].queue.size());
}
}
void Play(int chanid, bool play) {
if (play) {
LOG_INFO(Audio, "Channel %i: Enabled", chanid);
} else {
LOG_INFO(Audio, "Channel %i: Disabled", chanid);
}
chans[chanid].enabled = play;
}
void Tick(int chanid) {
auto& c = chans[chanid];
if (!c.queue.empty()) {
while (!c.queue.empty()) {
alSourceQueueBuffers(c.source, 1, &c.queue.top().buffer);
if (alGetError() != AL_NO_ERROR) {
alDeleteBuffers(1, &c.queue.top().buffer);
LOG_CRITICAL(Audio, "Channel %i: Buffer %i: Failed to enqueue : %s", chanid, c.queue.top().id, alGetString(alGetError()));
c.queue.pop();
continue;
}
c.playing.emplace(c.queue.top());
c.queue.pop();
}
if (c.enabled) {
ALint state;
alGetSourcei(c.source, AL_SOURCE_STATE, &state);
if (state != AL_PLAYING) {
alSourcePlay(c.source);
}
}
}
if (chans[chanid].playing.size() > 10) {
LOG_ERROR(Audio, "Channel %i: We have far far too many buffers enqueued (%i of them)", chanid, chans[chanid].playing.size());
}
ALint processed;
alGetSourcei(c.source, AL_BUFFERS_PROCESSED, &processed);
while (processed > 0) {
ALuint buf;
alSourceUnqueueBuffers(c.source, 1, &buf);
processed--;
if (!c.playing.empty()) {
if (c.playing.front().buffer != buf) {
LOG_CRITICAL(Audio, "Channel %i: Play queue desynced with OpenAL queue. (buf???)", chanid);
} else {
LOG_DEBUG(Audio, "Channel %i: Buffer %i: Finished playing", chanid, c.playing.front().id);
}
c.last_bufid = c.playing.front().id;
c.playing.pop();
} else {
LOG_CRITICAL(Audio, "Channel %i: Play queue desynced with OpenAL queue. (empty)", chanid);
}
alDeleteBuffers(1, &buf);
}
if (!c.playing.empty()) {
c.last_bufid = c.playing.front().id;
}
}
std::tuple<bool, u16, u32> GetStatus(int chanid) {
auto& c = chans[chanid];
bool isplaying = c.enabled;
u16 bufid = c.last_bufid;
u32 pos;
ALint state, samples;
alGetSourcei(c.source, AL_SOURCE_STATE, &state);
alGetSourcei(c.source, AL_SAMPLE_OFFSET, &samples);
pos = samples;
return std::make_tuple(isplaying, bufid, pos);
}
};

37
src/core/audio/audio.h Normal file
View file

@ -0,0 +1,37 @@
#pragma once
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"
#include "common/common_types.h"
#include <tuple>
namespace Audio {
void Init();
void Shutdown();
enum Format : u16 {
FORMAT_PCM8 = 0,
FORMAT_PCM16 = 1,
FORMAT_ADPCM = 2
};
void UpdateFormat(int chanid, int mono_or_stereo, Format format);
void UpdateAdpcm(int chanid, s16 coeffs[16]);
void Play(int chanid, bool play);
void EnqueueBuffer(int chanid, u16 buffer_id, void* data, int sample_count, bool is_looping);
void Tick(int chanid);
// Return values:
// <1>: is_enabled
// <2>: prev buffer_id
// <3>: current sample position in current buffer
std::tuple<bool, u16, u32> GetStatus(int chanid);
};

View file

@ -1,288 +0,0 @@
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"
#include "common/logging/log.h"
#include "core/audio/stream.h"
#include <algorithm>
#include <array>
#include <queue>
namespace Audio {
std::vector<s16> DecodeADPCM(u8* data, size_t sample_count, bool has_adpcm, u16 adpcm_ps, s16* adpcm_yn, const std::array<s16, 16>& adpcm_coeff);
static const int BASE_SAMPLE_RATE = 22050;
struct Buffer {
u16 id;
ALuint buffer;
bool is_looping;
bool operator < (const Buffer& other) const {
if ((other.id - id) > 1000) return true;
if ((id - other.id) > 1000) return false;
return id > other.id;
}
};
struct AdpcmState {
u16 ps;
s16 yn0;
s16 yn1;
};
std::vector<s16> DecodeADPCM(u8* data, size_t sample_count, bool has_adpcm, u16 adpcm_ps, s16 adpcm_yn[2], const std::array<s16, 16>& adpcm_coeff, AdpcmState& state) {
std::vector<s16> ret(sample_count);
int yn0 = state.yn0, yn1 = state.yn1;
if (sample_count % 14 != 0) {
LOG_ERROR(Audio, "Audio stream has incomplete frames");
}
const static int signed_nybbles[16] = { 0,1,2,3,4,5,6,7,-8,-7,-6,-5,-4,-3,-2,-1 };
const int num_frames = sample_count / 14;
for (int frameno = 0; frameno < num_frames; frameno++) {
int frame_header = data[frameno * 8];
int scale = 1 << (frame_header & 0xF);
int idx = (frame_header >> 4) & 0x7;
int coef0 = (s16)adpcm_coeff[idx * 2 + 0];
int coef1 = (s16)adpcm_coeff[idx * 2 + 1];
auto next_nybble = [&](int nybble) -> s16 {
int val = (((nybble * scale) << 11) + 0x400 + coef0 * yn0 + coef1 * yn1) >> 11;
if (val >= 32767) val = 32767;
if (val <= -32768) val = -32768;
yn1 = yn0;
yn0 = val;
return (s16)val;
};
for (int i = frameno * 14, datai = frameno * 8 + 1, samplecount = 0; samplecount < 14; i += 2, datai++, samplecount += 2) {
ret[i + 0] = next_nybble(signed_nybbles[data[datai] & 0xF]);
ret[i + 1] = next_nybble(signed_nybbles[data[datai] >> 4]);
}
}
state.yn0 = yn0;
state.yn1 = yn1;
return ret;
}
struct OutputChannel {
ALuint source;
int mono_or_stereo;
Format format;
int format_rest;
std::priority_queue<Buffer> queue;
std::queue<Buffer> playing;
u16 last_bufid;
bool enabled;
std::array<s16, 16> adpcm_coeffs;
AdpcmState adpcm_state;
};
OutputChannel chans[24];
int InitAL(void)
{
ALCdevice *device;
ALCcontext *ctx;
/* Open and initialize a device with default settings */
device = alcOpenDevice(NULL);
if (!device)
{
LOG_CRITICAL(Audio, "Could not open a device!");
return 1;
}
ctx = alcCreateContext(device, NULL);
if (ctx == NULL || alcMakeContextCurrent(ctx) == ALC_FALSE)
{
if (ctx != NULL)
alcDestroyContext(ctx);
alcCloseDevice(device);
LOG_CRITICAL(Audio, "Could not set a context!");
return 1;
}
LOG_INFO(Audio, "Opened \"%s\"", alcGetString(device, ALC_DEVICE_SPECIFIER));
return 0;
}
ALuint silencebuffer;
ALCint dev_rate;
std::array<u8, 10000> silence;
void Init() {
InitAL();
{
ALCdevice *device = alcGetContextsDevice(alcGetCurrentContext());
alcGetIntegerv(device, ALC_FREQUENCY, 1, &dev_rate);
if (alcGetError(device) != ALC_NO_ERROR) LOG_CRITICAL(Audio, "Failed to get device sample rate");
LOG_INFO(Audio, "Device Frequency: %i", dev_rate);
}
for (int i = 0; i < 24; i++) {
alGenSources(1, &chans[i].source);
if (alGetError() != AL_NO_ERROR) LOG_CRITICAL(Audio, "Failed to setup sound source");
}
silence.fill(0);
}
void Shutdown() {}
void UpdateFormat(int chanid, int mono_or_stereo, Format format, int rest) {
chans[chanid].mono_or_stereo = mono_or_stereo;
chans[chanid].format = format;
chans[chanid].format_rest = rest;
}
void UpdateAdpcm(int chanid, s16 coeffs[16]) {
LOG_INFO(Audio, "ADPCM Coeffs updated for channel %i", chanid);
std::copy(coeffs, coeffs+16, std::begin(chans[chanid].adpcm_coeffs));
}
void EnqueueBuffer(int chanid, u16 buffer_id,
void* data, int sample_count,
bool has_adpcm, u16 adpcm_ps, s16 adpcm_yn[2],
bool is_looping) {
LOG_INFO(Audio, "enqueu for %i", chanid);
if (is_looping) {
LOG_WARNING(Audio, "Looped buffers are unimplemented");
}
ALuint b;
alGenBuffers(1, &b);
if (chans[chanid].format == FORMAT_PCM16) {
switch (chans[chanid].mono_or_stereo) {
case 2:
alBufferData(b, AL_FORMAT_STEREO16, data, sample_count * 4, BASE_SAMPLE_RATE);
break;
case 1:
default:
alBufferData(b, AL_FORMAT_MONO16, data, sample_count * 2, BASE_SAMPLE_RATE);
break;
}
if (alGetError() != AL_NO_ERROR) LOG_CRITICAL(Audio, "Failed to init buffer");
} else if (chans[chanid].format == FORMAT_PCM8) {
switch (chans[chanid].mono_or_stereo) {
case 2:
alBufferData(b, AL_FORMAT_STEREO8, data, sample_count * 2, BASE_SAMPLE_RATE);
break;
case 1:
default:
alBufferData(b, AL_FORMAT_MONO8, data, sample_count * 1, BASE_SAMPLE_RATE);
break;
}
if (alGetError() != AL_NO_ERROR) LOG_CRITICAL(Audio, "Failed to init buffer");
} else if (chans[chanid].format == FORMAT_ADPCM) {
if (chans[chanid].mono_or_stereo != 1) {
LOG_ERROR(Audio, "Being fed non-mono ADPCM");
}
std::vector<s16> decoded = DecodeADPCM((u8*)data, sample_count, has_adpcm, adpcm_ps, adpcm_yn, chans[chanid].adpcm_coeffs, chans[chanid].adpcm_state);
alBufferData(b, AL_FORMAT_STEREO16, decoded.data(), decoded.size()*2, BASE_SAMPLE_RATE);
if (alGetError() != AL_NO_ERROR) LOG_CRITICAL(Audio, "Failed to init buffer");
} else {
LOG_ERROR(Audio, "Unrecognised audio format in buffer 0x%04x (size: %i samples)", buffer_id, sample_count);
alBufferData(b, AL_FORMAT_MONO8, silence.data(), silence.size(), BASE_SAMPLE_RATE);
if (alGetError() != AL_NO_ERROR) LOG_CRITICAL(Audio, "Failed to init buffer");
}
chans[chanid].queue.emplace( Buffer { buffer_id, b, is_looping });
}
void Play(int chanid, bool play) {
LOG_INFO(Audio, "Play(%i,%i)", chanid, play);
chans[chanid].enabled = play;
}
void Tick(int chanid) {
auto& c = chans[chanid];
if (!c.queue.empty()) {
while (!c.queue.empty()) {
alSourceQueueBuffers(c.source, 1, &c.queue.top().buffer);
if (alGetError() != AL_NO_ERROR) {
LOG_CRITICAL(Audio, "Failed to enqueue buffer");
c.queue.pop();
continue;
}
c.playing.emplace(c.queue.top());
LOG_DEBUG(Audio, "Enqueued buffer id 0x%04x", c.queue.top().id);
c.queue.pop();
}
if (c.enabled) {
ALint state;
alGetSourcei(c.source, AL_SOURCE_STATE, &state);
if (state != AL_PLAYING) {
alSourcePlay(c.source);
}
}
}
if (!c.playing.empty()) {
c.last_bufid = c.playing.front().id;
}
ALint processed;
alGetSourcei(c.source, AL_BUFFERS_PROCESSED, &processed);
while (processed > 0) {
ALuint buf;
alSourceUnqueueBuffers(c.source, 1, &buf);
processed--;
LOG_DEBUG(Audio, "Finished buffer id 0x%04x", c.playing.front().id);
if (!c.playing.empty()) {
if (c.playing.front().buffer != buf) LOG_CRITICAL(Audio, "Audio is extremely funky. Should abort. (Desynced queue.)");
c.last_bufid = c.playing.front().id;
c.playing.pop();
} else {
LOG_CRITICAL(Audio, "Audio is extremely funky. Should abort. (Empty queue.)");
}
alDeleteBuffers(1, &buf);
}
if (!c.playing.empty()) {
c.last_bufid = c.playing.front().id;
}
}
std::tuple<bool, u16, u32> GetStatus(int chanid) {
auto& c = chans[chanid];
bool isplaying = c.enabled;
u16 bufid = 0;
u32 pos = 0;
ALint state, samples;
alGetSourcei(c.source, AL_SOURCE_STATE, &state);
alGetSourcei(c.source, AL_SAMPLE_OFFSET, &samples);
bufid = c.last_bufid;
pos = samples;
return std::make_tuple(isplaying, bufid, pos);
}
};

View file

@ -1,34 +0,0 @@
#pragma once
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"
#include "common/common_types.h"
#include <tuple>
namespace Audio {
void Init();
void Shutdown();
enum Format : u16 {
FORMAT_PCM8 = 0,
FORMAT_PCM16 = 1,
FORMAT_ADPCM = 2
};
void UpdateFormat(int chanid, int mono_or_stereo, Format format, int rest);
void UpdateAdpcm(int chanid, s16 coeffs[16]);
void Play(int chanid, bool play);
void EnqueueBuffer(int chanid, u16 buffer_id,
void* data, int sample_count,
bool has_adpcm, u16 adpcm_ps, s16 adpcm_yn[2],
bool is_looping);
void Tick(int chanid);
std::tuple<bool, u16, u32> GetStatus(int chanid);
};

View file

@ -5,7 +5,7 @@
#include "common/bit_field.h"
#include "common/logging/log.h"
#include "core/audio/stream.h"
#include "core/audio/audio.h"
#include "core/core_timing.h"
#include "core/hle/kernel/event.h"
#include "core/hle/service/dsp_dsp.h"
@ -35,51 +35,51 @@ static std::unordered_map<std::pair<u32, u32>, Kernel::SharedPtr<Kernel::Event>,
static const u64 frame_tick = 1310252ull;
static int tick_event;
// Addresses of various things
static const VAddr BASE_ADDR_0 = Memory::DSP_RAM_VADDR + 0x40000;
static const VAddr BASE_ADDR_1 = Memory::DSP_RAM_VADDR + 0x60000;
static constexpr VAddr DspAddrToVAddr(VAddr base, u32 dsp_addr) {
return (VAddr(dsp_addr) << 1) + base;
}
static const u32 DSPADDR0 = 0xBFFF; // Frame Counter
static const u32 DSPADDR1 = 0x9E92; // Channel Context (x24)
static const u32 DSPADDR2 = 0x8680; // Channel Status (x24)
static const u32 DSPADDR3 = 0xA792; // ADPCM Coefficients (x24)
static const u32 DSPADDR4 = 0x9430; // Context
static const u32 DSPADDR5 = 0x8400; // Status
static const u32 DSPADDR6 = 0x8540; // Loopback Samples
static const u32 DSPADDR7 = 0x9494;
static const u32 DSPADDR8 = 0x8710;
static const u32 DSPADDR9 = 0x8410; // ???
static const u32 DSPADDR10 = 0xA912;
static const u32 DSPADDR11 = 0xAA12;
static const u32 DSPADDR12 = 0xAAD2;
static const u32 DSPADDR13 = 0xAC52;
static const u32 DSPADDR14 = 0xAC5C;
static const u32 DSPADDR_frame_counter = DSPADDR0;
static const int NUM_CHANNELS = 24;
// DSP Addresses
static const VAddr BASE_ADDR_0 = Memory::DSP_RAM_VADDR + 0x40000;
static const VAddr BASE_ADDR_1 = Memory::DSP_RAM_VADDR + 0x60000;
enum DspRegion {
DSPADDR0 = 0xBFFF, // Frame Counter
DSPADDR1 = 0x9E92, // Channel Context (x24)
DSPADDR2 = 0x8680, // Channel Status (x24)
DSPADDR3 = 0xA792, // ADPCM Coefficients (x24)
DSPADDR4 = 0x9430, // Context
DSPADDR5 = 0x8400, // Status
DSPADDR6 = 0x8540, // Loopback Samples
DSPADDR7 = 0x9494,
DSPADDR8 = 0x8710,
DSPADDR9 = 0x8410, // ???
DSPADDR10 = 0xA912,
DSPADDR11 = 0xAA12,
DSPADDR12 = 0xAAD2,
DSPADDR13 = 0xAC52,
DSPADDR14 = 0xAC5C
};
static constexpr VAddr DspAddrToVAddr(VAddr base, DspRegion dsp_addr) {
return (VAddr(dsp_addr) << 1) + base;
}
/**
* DSP_DSP::DspEndian
* Care must be taken when reading/writing 32-bit values. The DSP has a 16-bit wordsize and is big-endian.
* The bytes in each word when viewed from the ARM11, however, are in little-endian.
* Thus we have what appears to be a middle-endian encoding.
*
* The below function is its own inverse.
* dsp_u32:
* Care must be taken when reading/writing 32-bit values as the words are not in the expected order.
*/
struct dsp_u32 {
operator u32() {
return Convert(storage);
}
void operator=(u32 newvalue) {
storage = Convert(newvalue);
}
private:
static constexpr u32 Convert(u32 value) {
return ((value & 0x0000FFFF) << 16) | ((value & 0xFFFF0000) >> 16);
}
operator u32() {
return Convert(value);
}
void operator=(u32 newvalue) {
value = Convert(newvalue);
}
private:
u32 value;
u32 storage;
};
#define INSERT_PADDING_DSPWORDS(num_words) u16 CONCAT2(pad, __LINE__)[(num_words)]
@ -87,21 +87,16 @@ private:
static_assert(std::is_standard_layout<name>::value, "Structure doesn't use standard layout"); \
static_assert(sizeof(name) == (size), "Unexpected struct size")
/*
* ADPCM seems to be the usual Nintendo format.
* ps = predictor / scaler
* yn[0,1] = sample history
* Coefficients are found at DSPADDR3
*/
struct Buffer {
dsp_u32 physical_address;
dsp_u32 sample_count;
u16 adpcm_ps;
s16 adpcm_yn[2];
u8 has_adpcm;
INSERT_PADDING_DSPWORDS(3);
INSERT_PADDING_BYTES(1);
u8 is_looping;
u16 buffer_id;
INSERT_PADDING_DSPWORDS(1);
};
@ -113,36 +108,39 @@ struct ChannelContext {
float mix[12];
float rate;
u8 rim[2];
u16 iirFilterType;
u16 iirFilter_mono[2];
u16 iirFilter_biquad[5];
u16 iirfilter_type;
u16 iirfilter_mono[2];
u16 iirfilter_biquad[5];
// Buffer Queue
u16 buffers_dirty; //< Which of those queued buffers is dirty (bit i == buffers[i])
Buffer buffers[4]; //< Queued Buffers
INSERT_PADDING_DSPWORDS(2);
u16 is_active; //< Lower 8 bits == 0x01 if true.
u16 sync;
INSERT_PADDING_DSPWORDS(4);
// Current Buffer
// Embedded Buffer
dsp_u32 physical_address;
dsp_u32 sample_count;
union {
u16 flags1_raw;
BitField<0, 2, u16> mono_or_stereo;
BitField<2, 2, Audio::Format> format;
BitField<4, 12, u16> rest;
};
u16 adpcm_ps;
s16 adpcm_yn[2];
INSERT_PADDING_DSPWORDS(3);
union {
u16 flags2_raw;
BitField<0, 1, u16> has_adpcm;
BitField<1, 1, u16> is_looping;
BitField<2, 14, u16> rest2;
};
u16 buffer_id;
};
ASSERT_STRUCT(ChannelContext, 192);
@ -153,7 +151,7 @@ struct ChannelStatus {
u16 sync;
dsp_u32 buffer_position;
u16 current_buffer_id;
u16 previous_buffer_id;
INSERT_PADDING_DSPWORDS(1);
};
ASSERT_STRUCT(ChannelStatus, 12);
@ -174,8 +172,9 @@ static void AudioTick(u64, int cycles_late) {
VAddr current_base;
{
int id0 = (int)Memory::Read16(DspAddrToVAddr(BASE_ADDR_0, DSPADDR_frame_counter));
int id1 = (int)Memory::Read16(DspAddrToVAddr(BASE_ADDR_1, DSPADDR_frame_counter));
// Frame IDs.
int id0 = (int)Memory::Read16(DspAddrToVAddr(BASE_ADDR_0, DSPADDR0));
int id1 = (int)Memory::Read16(DspAddrToVAddr(BASE_ADDR_1, DSPADDR0));
// The frame id increments once per audio frame, with wraparound at 65,535.
// I am uncertain whether the real DSP actually does something like this,
@ -206,7 +205,7 @@ static void AudioTick(u64, int cycles_late) {
if (ctx.dirty) {
if (TestAndUnsetBit(ctx.dirty, 29)) {
// First time init
LOG_WARNING(Service_DSP, "Unimplemented dirty bit 29");
LOG_DEBUG(Service_DSP, "Channel %i: First Time Init", chanid);
}
if (TestAndUnsetBit(ctx.dirty, 2)) {
@ -216,50 +215,42 @@ static void AudioTick(u64, int cycles_late) {
if (TestAndUnsetBit(ctx.dirty, 17)) {
// Interpolation type
LOG_WARNING(Service_DSP, "Unimplemented dirty bit 17");
LOG_WARNING(Service_DSP, "Channel %i: Unimplemented dirty bit 17", chanid);
}
if (TestAndUnsetBit(ctx.dirty, 18)) {
// Rate
LOG_WARNING(Service_DSP, "Unimplemented dirty bit 18");
LOG_INFO(Service_DSP, "Rate %f", ctx.rate);
LOG_WARNING(Service_DSP, "Channel %i: Unimplemented Rate %f", chanid, ctx.rate);
}
if (TestAndUnsetBit(ctx.dirty, 22)) {
// IIR
LOG_WARNING(Service_DSP, "Unimplemented dirty bit 22");
LOG_INFO(Service_DSP, "IIR %x", ctx.iirFilterType);
LOG_WARNING(Service_DSP, "Channel %i: Unimplemented IIR %x", chanid, ctx.iirfilter_type);
}
if (TestAndUnsetBit(ctx.dirty, 28)) {
// Sync count
LOG_DEBUG(Service_DSP, "Update Sync Count");
LOG_DEBUG(Service_DSP, "Channel %i: Update Sync Count");
status0.sync = ctx.sync;
status1.sync = ctx.sync;
}
if (TestAndUnsetBit(ctx.dirty, 25) | TestAndUnsetBit(ctx.dirty, 26) | TestAndUnsetBit(ctx.dirty, 27)) {
// Mix
LOG_WARNING(Service_DSP, "Unimplemented dirty bit 25/26/27");
for (int i = 0; i < 12; i++)
LOG_INFO(Service_DSP, "mix[%i] %f", i, ctx.mix[i]);
LOG_DEBUG(Service_DSP, "Channel %i: mix[%i] %f", chanid, i, ctx.mix[i]);
}
if (TestAndUnsetBit(ctx.dirty, 4) | TestAndUnsetBit(ctx.dirty, 21) | TestAndUnsetBit(ctx.dirty, 30)) {
// TODO(merry): One of these bits might merely signify an update to the format. Verify this.
// Embedded Buffer Changed
Audio::UpdateFormat(chanid, ctx.mono_or_stereo, ctx.format, ctx.rest);
// Format updated
Audio::UpdateFormat(chanid, ctx.mono_or_stereo, ctx.format);
channel_contex0[chanid].flags1_raw = channel_contex1[chanid].flags1_raw = ctx.flags1_raw;
channel_contex0[chanid].flags2_raw = channel_contex1[chanid].flags2_raw = ctx.flags2_raw;
if (ctx.rest || ctx.rest2) {
LOG_ERROR(Service_DSP, "chan %i rest %04x rest2 %04x", chanid, ctx.rest, ctx.rest2);
}
Audio::UpdateAdpcm(chanid, channel_adpcm_coeffs[chanid].coeff);
Audio::EnqueueBuffer(chanid, ctx.buffer_id,
Memory::GetPhysicalPointer(ctx.physical_address), ctx.sample_count,
ctx.has_adpcm, ctx.adpcm_ps, ctx.adpcm_yn,
ctx.is_looping);
// Embedded Buffer Changed
Audio::EnqueueBuffer(chanid, ctx.buffer_id, Memory::GetPhysicalPointer(ctx.physical_address), ctx.sample_count, ctx.is_looping);
status0.is_playing |= 0x100; // TODO: This is supposed to flicker on then turn off.
}
@ -269,15 +260,12 @@ static void AudioTick(u64, int cycles_late) {
for (int i = 0; i < 4; i++) {
if (TestAndUnsetBit(ctx.buffers_dirty, i)) {
auto& b = ctx.buffers[i];
Audio::EnqueueBuffer(chanid, b.buffer_id,
Memory::GetPhysicalPointer(b.physical_address), b.sample_count,
b.has_adpcm, b.adpcm_ps, b.adpcm_yn,
b.is_looping);
Audio::EnqueueBuffer(chanid, b.buffer_id, Memory::GetPhysicalPointer(b.physical_address), b.sample_count, b.is_looping);
}
}
if (ctx.buffers_dirty) {
LOG_ERROR(Service_DSP, "Unknown channel buffer dirty bits: 0x%04x", ctx.buffers_dirty);
LOG_ERROR(Service_DSP, "Channel %i: Unknown channel buffer dirty bits: 0x%04x", chanid, ctx.buffers_dirty);
}
ctx.buffers_dirty = 0;
@ -291,16 +279,14 @@ static void AudioTick(u64, int cycles_late) {
}
if (ctx.dirty) {
LOG_ERROR(Service_DSP, "Unknown channel dirty bits: 0x%08x", ctx.dirty);
LOG_ERROR(Service_DSP, "%i Rim %i %i", chanid, ctx.rim[0], ctx.rim[1]);
LOG_ERROR(Service_DSP, "%i IIR-type %i", chanid, ctx.iirFilterType);
LOG_ERROR(Service_DSP, "%i Mono %f %f", chanid, ctx.iirFilter_mono[0], ctx.iirFilter_mono[1]);
LOG_ERROR(Service_DSP, "%i Biquad %f %f %f %f %f", chanid, ctx.iirFilter_biquad[0], ctx.iirFilter_biquad[1], ctx.iirFilter_biquad[2], ctx.iirFilter_biquad[3], ctx.iirFilter_biquad[4]);
LOG_ERROR(Service_DSP, "Channel %i: Unknown channel dirty bits: 0x%08x", chanid, ctx.dirty);
}
ctx.dirty = 0;
}
// TODO: Detect any change to the structures without a dirty flag update to identify what the other bits do.
Audio::Tick(chanid);
// Update channel status
@ -334,7 +320,7 @@ static void ConvertProcessAddressFromDspDram(Service::Interface* self) {
u32 addr = cmd_buff[1];
cmd_buff[1] = 0; // No error
cmd_buff[2] = DspAddrToVAddr(BASE_ADDR_0, addr);
cmd_buff[2] = DspAddrToVAddr(BASE_ADDR_0, (DspRegion)addr);
}
/**

View file

@ -2,7 +2,7 @@
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "core/audio/stream.h"
#include "core/audio/audio.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/system.h"