* Core::Timing: Add multiple timer, one for each core
* revert clang-format; work on tests for CoreTiming
* Kernel:: Add support for multiple cores, asserts in HandleSyncRequest because Thread->status == WaitIPC
* Add some TRACE_LOGs
* fix tests
* make some adjustments to qt-debugger, cheats and gdbstub(probably still broken)
* Make ARM_Interface::id private, rework ARM_Interface ctor
* ReRename TimingManager to Timing for smaler diff
* addressed review comments
This attempts to fix segfault in some tests where page table is set before initializing cpu core (intended behaviour? might be worth a check...)
see: src/tests/core/arm/arm_test_common.cpp
see: src/tests/core/arm/dyncom/arm_dyncom_vfp_tests.cpp
It will both change the page table in memory and notify the CPU about the change by itself. This way there is no need to call memory.SetCurrentPageTable() when kernel.setCurrentProcess() and the management is kept internally in the kernel
Two functional change:
QueryProcessMemory uses the process passed from handle instead current_process
Thread::Stop() uses TLS from owner_process instead of current_process
Despite being covered by a global mutex, we should still ensure that the
class handles its reference counts properly. This avoids potential
shenanigans when it comes to data races.
Given this is the root object that drives quite a bit of the kernel
object hierarchy, ensuring we always have the correct behavior (and no
races) is a good thing.
* Add setting to switch between a fixed start time and the system time
Add clock settings to SDL
Make clock configureable in qt
Add a SharedPage handler class
Init shared_page_handler for tests
This fixes a potential bug where threads would not get removed from said list if they awoke after waiting with WaitSynchronizationN with wait_all = false
Define a variable with the value of the sync timeout error code.
Use a boost::flat_map instead of an unordered_map to hold the equivalence of objects and wait indices in a WaitSynchN call.
Threads will now be awakened when the objects they're waiting on are signaled, instead of repeating the WaitSynchronization call every now and then.
The scheduler is now called once after every SVC call, and once after a thread is awakened from sleep by its timeout callback.
This new implementation is based off reverse-engineering of the real kernel.
See https://gist.github.com/Subv/02f29bd9f1e5deb7aceea1e8f019c8f4 for a more detailed description of how the real kernel handles rescheduling.