* common/thread: Remove unused functions
Many of these functions are carried over from Dolphin (where they aren't
used anymore). Given these have no use (and we really shouldn't be
screwing around with OS-specific thread scheduler handling from the
emulator, these can be removed.
The function for setting the thread name is left, however, since it can
have debugging utility usages.
* input_common/sdl: Use a type alias to shorten declaration of GetPollers
Just makes the definitions a little bit more tidy.
* input_common/sdl: Correct return values within implementations of GetPollers()
In both cases, we weren't actually returning anything, which is
undefined behavior.
* yuzu/debugger/graphics_surface: Fill in missing surface format listings
Fills in the missing surface types that were marked as unknown. The
order corresponds with the TextureFormat enum within
video_core/texture.h.
We also don't need to all of these strings as translatable (only the
first string, as it's an English word).
* yuzu/debugger/graphics_surface: Clean up connection overload deduction
We can utilize qOverload with the signal connections to make the
function deducing a little less ugly.
* yuzu/debugger/graphics_surface: Tidy up SaveSurface
- Use QStringLiteral where applicable.
- Use const where applicable
- Remove unnecessary precondition check (we already assert the pixbuf
being non null)
* yuzu/debugger/graphics_surface: Display error messages for file I/O errors
* core: Add missing override specifiers where applicable
Applies the override specifier where applicable. In the case of
destructors that are defaulted in their definition, they can
simply be removed.
This also removes the unnecessary inclusions being done in audin_u and
audrec_u, given their close proximity.
* kernel/thread: Make parameter of GetWaitObjectIndex() const qualified
The pointed to member is never actually modified, so it can be made
const.
* kernel/thread: Avoid sign conversion within GetCommandBufferAddress()
Previously this was performing a u64 + int sign conversion. When dealing
with addresses, we should generally be keeping the arithmetic in the
same signedness type.
This also gets rid of the static lifetime of the constant, as there's no
need to make a trivial type like this potentially live for the entire
duration of the program.
* kernel/codeset: Make CodeSet's memory data member a regular std::vector
The use of a shared_ptr is an implementation detail of the VMManager
itself when mapping memory. Because of that, we shouldn't require all
users of the CodeSet to have to allocate the shared_ptr ahead of time.
It's intended that CodeSet simply pass in the required direct data, and
that the memory manager takes care of it from that point on.
This means we just do the shared pointer allocation in a single place,
when loading modules, as opposed to in each loader.
* kernel/wait_object: Make ShouldWait() take thread members by pointer-to-const
Given this is intended as a querying function, it doesn't make sense to
allow the implementer to modify the state of the given thread.
* gdbstub: fix IsMemoryBreak() returning false while connected to client
As a result, the only existing codepath for a memory watchpoint hit to break into GDB (InterpeterMainLoop, GDB_BP_CHECK, ARMul_State::RecordBreak) is finally taken,
which exposes incorrect logic* in both RecordBreak and ServeBreak.
* a blank BreakpointAddress structure is passed, which sets r15 (PC) to NULL
* gdbstub: DynCom: default-initialize two members/vars used in conditionals
* gdbstub: DynCom: don't record memory watchpoint hits via RecordBreak()
For now, instead check for GDBStub::IsMemoryBreak() in InterpreterMainLoop and ServeBreak.
Fixes PC being set to a stale/unhit breakpoint address (often zero) when a memory watchpoint (rwatch, watch, awatch) is handled in ServeBreak() and generates a GDB trap.
Reasons for removing a call to RecordBreak() for memory watchpoints:
* The``breakpoint_data`` we pass is typed Execute or None. It describes the predicted next code breakpoint hit relative to PC;
* GDBStub::IsMemoryBreak() returns true if a recent Read/Write operation hit a watchpoint. It doesn't specify which in return, nor does it trace it anywhere. Thus, the only data we could give RecordBreak() is a placeholder BreakpointAddress at offset NULL and type Access. I found the idea silly, compared to simply relying on GDBStub::IsMemoryBreak().
There is currently no measure in the code that remembers the addresses (and types) of any watchpoints that were hit by an instruction, in order to send them to GDB as "extended stop information."
I'm considering an implementation for this.
* gdbstub: Change an ASSERT to DEBUG_ASSERT
I have never seen the (Reg[15] == last_bkpt.address) assert fail in practice, even after several weeks of (locally) developping various branches around GDB. Only leave it inside Debug builds.
- Can be used in either DynCom or Dynarmic mode
- Added support for threads
- Proper support for FPU registers
- Fix for NibbleToHex conversion that used to produce false error codes
- Fix for clang-format failing under Windows
* core/arm/skyeye_common: Migrate logging macros
Use the new logging macros NGLOG
* Replace specifiers that were missed out
* Replace printf with NGLOG
* skyeye_common: fix NGLOG without log class
Fixes two issues that will never happen:
1. There are cases when VFP_REG_ZERO will be non-zero, but these will
never be encoutered in well behaved guest code (i.e. writing to D16).
2. If CONFIG_VFPv3 is defined, accessing VFP_REG_ZERO would be out of
bounds.