// Copyright 2017 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include "audio_core/audio_types.h" #include "audio_core/hle/common.h" #include "audio_core/hle/hle.h" #include "audio_core/hle/mixers.h" #include "audio_core/hle/shared_memory.h" #include "audio_core/hle/source.h" #include "audio_core/sink.h" #include "common/assert.h" #include "common/common_types.h" #include "common/logging/log.h" #include "core/core_timing.h" #include "core/hle/service/dsp_dsp.h" namespace AudioCore { static constexpr u64 audio_frame_ticks = 1310252ull; ///< Units: ARM11 cycles struct DspHle::Impl final { public: explicit Impl(DspHle& parent); ~Impl(); DspState GetDspState() const; std::vector PipeRead(DspPipe pipe_number, u32 length); size_t GetPipeReadableSize(DspPipe pipe_number) const; void PipeWrite(DspPipe pipe_number, const std::vector& buffer); std::array& GetDspMemory(); private: void ResetPipes(); void WriteU16(DspPipe pipe_number, u16 value); void AudioPipeWriteStructAddresses(); size_t CurrentRegionIndex() const; HLE::SharedMemory& ReadRegion(); HLE::SharedMemory& WriteRegion(); StereoFrame16 GenerateCurrentFrame(); bool Tick(); void AudioTickCallback(int cycles_late); DspState dsp_state = DspState::Off; std::array, num_dsp_pipe> pipe_data; HLE::DspMemory dsp_memory; std::array sources{{ HLE::Source(0), HLE::Source(1), HLE::Source(2), HLE::Source(3), HLE::Source(4), HLE::Source(5), HLE::Source(6), HLE::Source(7), HLE::Source(8), HLE::Source(9), HLE::Source(10), HLE::Source(11), HLE::Source(12), HLE::Source(13), HLE::Source(14), HLE::Source(15), HLE::Source(16), HLE::Source(17), HLE::Source(18), HLE::Source(19), HLE::Source(20), HLE::Source(21), HLE::Source(22), HLE::Source(23), }}; HLE::Mixers mixers; DspHle& parent; CoreTiming::EventType* tick_event; }; DspHle::Impl::Impl(DspHle& parent_) : parent(parent_) { dsp_memory.raw_memory.fill(0); tick_event = CoreTiming::RegisterEvent("AudioCore::DspHle::tick_event", [this](u64, int cycles_late) { this->AudioTickCallback(cycles_late); }); CoreTiming::ScheduleEvent(audio_frame_ticks, tick_event); } DspHle::Impl::~Impl() { CoreTiming::UnscheduleEvent(tick_event, 0); } DspState DspHle::Impl::GetDspState() const { return dsp_state; } std::vector DspHle::Impl::PipeRead(DspPipe pipe_number, u32 length) { const size_t pipe_index = static_cast(pipe_number); if (pipe_index >= num_dsp_pipe) { LOG_ERROR(Audio_DSP, "pipe_number = %zu invalid", pipe_index); return {}; } if (length > UINT16_MAX) { // Can only read at most UINT16_MAX from the pipe LOG_ERROR(Audio_DSP, "length of %u greater than max of %u", length, UINT16_MAX); return {}; } std::vector& data = pipe_data[pipe_index]; if (length > data.size()) { LOG_WARNING( Audio_DSP, "pipe_number = %zu is out of data, application requested read of %u but %zu remain", pipe_index, length, data.size()); length = static_cast(data.size()); } if (length == 0) return {}; std::vector ret(data.begin(), data.begin() + length); data.erase(data.begin(), data.begin() + length); return ret; } size_t DspHle::Impl::GetPipeReadableSize(DspPipe pipe_number) const { const size_t pipe_index = static_cast(pipe_number); if (pipe_index >= num_dsp_pipe) { LOG_ERROR(Audio_DSP, "pipe_number = %zu invalid", pipe_index); return 0; } return pipe_data[pipe_index].size(); } void DspHle::Impl::PipeWrite(DspPipe pipe_number, const std::vector& buffer) { switch (pipe_number) { case DspPipe::Audio: { if (buffer.size() != 4) { LOG_ERROR(Audio_DSP, "DspPipe::Audio: Unexpected buffer length %zu was written", buffer.size()); return; } enum class StateChange { Initialize = 0, Shutdown = 1, Wakeup = 2, Sleep = 3, }; // The difference between Initialize and Wakeup is that Input state is maintained // when sleeping but isn't when turning it off and on again. (TODO: Implement this.) // Waking up from sleep garbles some of the structs in the memory region. (TODO: // Implement this.) Applications store away the state of these structs before // sleeping and reset it back after wakeup on behalf of the DSP. switch (static_cast(buffer[0])) { case StateChange::Initialize: LOG_INFO(Audio_DSP, "Application has requested initialization of DSP hardware"); ResetPipes(); AudioPipeWriteStructAddresses(); dsp_state = DspState::On; break; case StateChange::Shutdown: LOG_INFO(Audio_DSP, "Application has requested shutdown of DSP hardware"); dsp_state = DspState::Off; break; case StateChange::Wakeup: LOG_INFO(Audio_DSP, "Application has requested wakeup of DSP hardware"); ResetPipes(); AudioPipeWriteStructAddresses(); dsp_state = DspState::On; break; case StateChange::Sleep: LOG_INFO(Audio_DSP, "Application has requested sleep of DSP hardware"); UNIMPLEMENTED(); dsp_state = DspState::Sleeping; break; default: LOG_ERROR(Audio_DSP, "Application has requested unknown state transition of DSP hardware %hhu", buffer[0]); dsp_state = DspState::Off; break; } return; } default: LOG_CRITICAL(Audio_DSP, "pipe_number = %zu unimplemented", static_cast(pipe_number)); UNIMPLEMENTED(); return; } } std::array& DspHle::Impl::GetDspMemory() { return dsp_memory.raw_memory; } void DspHle::Impl::ResetPipes() { for (auto& data : pipe_data) { data.clear(); } dsp_state = DspState::Off; } void DspHle::Impl::WriteU16(DspPipe pipe_number, u16 value) { const size_t pipe_index = static_cast(pipe_number); std::vector& data = pipe_data.at(pipe_index); // Little endian data.emplace_back(value & 0xFF); data.emplace_back(value >> 8); } void DspHle::Impl::AudioPipeWriteStructAddresses() { // These struct addresses are DSP dram addresses. // See also: DSP_DSP::ConvertProcessAddressFromDspDram static const std::array struct_addresses = { 0x8000 + offsetof(HLE::SharedMemory, frame_counter) / 2, 0x8000 + offsetof(HLE::SharedMemory, source_configurations) / 2, 0x8000 + offsetof(HLE::SharedMemory, source_statuses) / 2, 0x8000 + offsetof(HLE::SharedMemory, adpcm_coefficients) / 2, 0x8000 + offsetof(HLE::SharedMemory, dsp_configuration) / 2, 0x8000 + offsetof(HLE::SharedMemory, dsp_status) / 2, 0x8000 + offsetof(HLE::SharedMemory, final_samples) / 2, 0x8000 + offsetof(HLE::SharedMemory, intermediate_mix_samples) / 2, 0x8000 + offsetof(HLE::SharedMemory, compressor) / 2, 0x8000 + offsetof(HLE::SharedMemory, dsp_debug) / 2, 0x8000 + offsetof(HLE::SharedMemory, unknown10) / 2, 0x8000 + offsetof(HLE::SharedMemory, unknown11) / 2, 0x8000 + offsetof(HLE::SharedMemory, unknown12) / 2, 0x8000 + offsetof(HLE::SharedMemory, unknown13) / 2, 0x8000 + offsetof(HLE::SharedMemory, unknown14) / 2, }; // Begin with a u16 denoting the number of structs. WriteU16(DspPipe::Audio, static_cast(struct_addresses.size())); // Then write the struct addresses. for (u16 addr : struct_addresses) { WriteU16(DspPipe::Audio, addr); } // Signal that we have data on this pipe. Service::DSP_DSP::SignalPipeInterrupt(DspPipe::Audio); } size_t DspHle::Impl::CurrentRegionIndex() const { // The region with the higher frame counter is chosen unless there is wraparound. // This function only returns a 0 or 1. const u16 frame_counter_0 = dsp_memory.region_0.frame_counter; const u16 frame_counter_1 = dsp_memory.region_1.frame_counter; if (frame_counter_0 == 0xFFFFu && frame_counter_1 != 0xFFFEu) { // Wraparound has occurred. return 1; } if (frame_counter_1 == 0xFFFFu && frame_counter_0 != 0xFFFEu) { // Wraparound has occurred. return 0; } return (frame_counter_0 > frame_counter_1) ? 0 : 1; } HLE::SharedMemory& DspHle::Impl::ReadRegion() { return CurrentRegionIndex() == 0 ? dsp_memory.region_0 : dsp_memory.region_1; } HLE::SharedMemory& DspHle::Impl::WriteRegion() { return CurrentRegionIndex() != 0 ? dsp_memory.region_0 : dsp_memory.region_1; } StereoFrame16 DspHle::Impl::GenerateCurrentFrame() { HLE::SharedMemory& read = ReadRegion(); HLE::SharedMemory& write = WriteRegion(); std::array intermediate_mixes = {}; // Generate intermediate mixes for (size_t i = 0; i < HLE::num_sources; i++) { write.source_statuses.status[i] = sources[i].Tick(read.source_configurations.config[i], read.adpcm_coefficients.coeff[i]); for (size_t mix = 0; mix < 3; mix++) { sources[i].MixInto(intermediate_mixes[mix], mix); } } // Generate final mix write.dsp_status = mixers.Tick(read.dsp_configuration, read.intermediate_mix_samples, write.intermediate_mix_samples, intermediate_mixes); StereoFrame16 output_frame = mixers.GetOutput(); // Write current output frame to the shared memory region for (size_t samplei = 0; samplei < output_frame.size(); samplei++) { for (size_t channeli = 0; channeli < output_frame[0].size(); channeli++) { write.final_samples.pcm16[samplei][channeli] = s16_le(output_frame[samplei][channeli]); } } return output_frame; } bool DspHle::Impl::Tick() { StereoFrame16 current_frame = {}; // TODO: Check dsp::DSP semaphore (which indicates emulated application has finished writing to // shared memory region) current_frame = GenerateCurrentFrame(); parent.OutputFrame(current_frame); return true; } void DspHle::Impl::AudioTickCallback(int cycles_late) { if (Tick()) { // TODO(merry): Signal all the other interrupts as appropriate. Service::DSP_DSP::SignalPipeInterrupt(DspPipe::Audio); // HACK(merry): Added to prevent regressions. Will remove soon. Service::DSP_DSP::SignalPipeInterrupt(DspPipe::Binary); } // Reschedule recurrent event CoreTiming::ScheduleEvent(audio_frame_ticks - cycles_late, tick_event); } DspHle::DspHle() : impl(std::make_unique(*this)) {} DspHle::~DspHle() = default; DspState DspHle::GetDspState() const { return impl->GetDspState(); } std::vector DspHle::PipeRead(DspPipe pipe_number, u32 length) { return impl->PipeRead(pipe_number, length); } size_t DspHle::GetPipeReadableSize(DspPipe pipe_number) const { return impl->GetPipeReadableSize(pipe_number); } void DspHle::PipeWrite(DspPipe pipe_number, const std::vector& buffer) { impl->PipeWrite(pipe_number, buffer); } std::array& DspHle::GetDspMemory() { return impl->GetDspMemory(); } } // namespace AudioCore