// Copyright 2017 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include #include #include "common/common_types.h" #include "common/logging/log.h" #include "core/core.h" #include "core/file_sys/ncch_container.h" #include "core/file_sys/seed_db.h" #include "core/hw/aes/key.h" #include "core/loader/loader.h" //////////////////////////////////////////////////////////////////////////////////////////////////// // FileSys namespace namespace FileSys { static const int kMaxSections = 8; ///< Maximum number of sections (files) in an ExeFs static const int kBlockSize = 0x200; ///< Size of ExeFS blocks (in bytes) /** * Attempts to patch a buffer using an IPS * @param ips Vector of the patches to apply * @param buffer Vector to patch data into */ static void ApplyIPS(std::vector& ips, std::vector& buffer) { u32 cursor = 5; u32 patch_length = ips.size() - 3; std::string ips_header(ips.begin(), ips.begin() + 5); if (ips_header != "PATCH") { LOG_INFO(Service_FS, "Attempted to load invalid IPS"); return; } while (cursor < patch_length) { std::string eof_check(ips.begin() + cursor, ips.begin() + cursor + 3); if (eof_check == "EOF") return; u32 offset = ips[cursor] << 16 | ips[cursor + 1] << 8 | ips[cursor + 2]; std::size_t length = ips[cursor + 3] << 8 | ips[cursor + 4]; // check for an rle record if (length == 0) { length = ips[cursor + 5] << 8 | ips[cursor + 6]; if (buffer.size() < offset + length) return; for (u32 i = 0; i < length; ++i) buffer[offset + i] = ips[cursor + 7]; cursor += 8; continue; } if (buffer.size() < offset + length) return; std::memcpy(&buffer[offset], &ips[cursor + 5], length); cursor += length + 5; } } /** * Get the decompressed size of an LZSS compressed ExeFS file * @param buffer Buffer of compressed file * @param size Size of compressed buffer * @return Size of decompressed buffer */ static u32 LZSS_GetDecompressedSize(const u8* buffer, u32 size) { u32 offset_size; std::memcpy(&offset_size, buffer + size - sizeof(u32), sizeof(u32)); return offset_size + size; } /** * Decompress ExeFS file (compressed with LZSS) * @param compressed Compressed buffer * @param compressed_size Size of compressed buffer * @param decompressed Decompressed buffer * @param decompressed_size Size of decompressed buffer * @return True on success, otherwise false */ static bool LZSS_Decompress(const u8* compressed, u32 compressed_size, u8* decompressed, u32 decompressed_size) { const u8* footer = compressed + compressed_size - 8; u32 buffer_top_and_bottom; std::memcpy(&buffer_top_and_bottom, footer, sizeof(u32)); u32 out = decompressed_size; u32 index = compressed_size - ((buffer_top_and_bottom >> 24) & 0xFF); u32 stop_index = compressed_size - (buffer_top_and_bottom & 0xFFFFFF); memset(decompressed, 0, decompressed_size); memcpy(decompressed, compressed, compressed_size); while (index > stop_index) { u8 control = compressed[--index]; for (unsigned i = 0; i < 8; i++) { if (index <= stop_index) break; if (index <= 0) break; if (out <= 0) break; if (control & 0x80) { // Check if compression is out of bounds if (index < 2) return false; index -= 2; u32 segment_offset = compressed[index] | (compressed[index + 1] << 8); u32 segment_size = ((segment_offset >> 12) & 15) + 3; segment_offset &= 0x0FFF; segment_offset += 2; // Check if compression is out of bounds if (out < segment_size) return false; for (unsigned j = 0; j < segment_size; j++) { // Check if compression is out of bounds if (out + segment_offset >= decompressed_size) return false; u8 data = decompressed[out + segment_offset]; decompressed[--out] = data; } } else { // Check if compression is out of bounds if (out < 1) return false; decompressed[--out] = compressed[--index]; } control <<= 1; } } return true; } NCCHContainer::NCCHContainer(const std::string& filepath, u32 ncch_offset) : ncch_offset(ncch_offset), filepath(filepath) { file = FileUtil::IOFile(filepath, "rb"); } Loader::ResultStatus NCCHContainer::OpenFile(const std::string& filepath, u32 ncch_offset) { this->filepath = filepath; this->ncch_offset = ncch_offset; file = FileUtil::IOFile(filepath, "rb"); if (!file.IsOpen()) { LOG_WARNING(Service_FS, "Failed to open {}", filepath); return Loader::ResultStatus::Error; } LOG_DEBUG(Service_FS, "Opened {}", filepath); return Loader::ResultStatus::Success; } Loader::ResultStatus NCCHContainer::Load() { LOG_INFO(Service_FS, "Loading NCCH from file {}", filepath); if (is_loaded) return Loader::ResultStatus::Success; if (file.IsOpen()) { // Reset read pointer in case this file has been read before. file.Seek(ncch_offset, SEEK_SET); if (file.ReadBytes(&ncch_header, sizeof(NCCH_Header)) != sizeof(NCCH_Header)) return Loader::ResultStatus::Error; // Skip NCSD header and load first NCCH (NCSD is just a container of NCCH files)... if (Loader::MakeMagic('N', 'C', 'S', 'D') == ncch_header.magic) { LOG_DEBUG(Service_FS, "Only loading the first (bootable) NCCH within the NCSD file!"); ncch_offset += 0x4000; file.Seek(ncch_offset, SEEK_SET); file.ReadBytes(&ncch_header, sizeof(NCCH_Header)); } // Verify we are loading the correct file type... if (Loader::MakeMagic('N', 'C', 'C', 'H') != ncch_header.magic) return Loader::ResultStatus::ErrorInvalidFormat; has_header = true; bool failed_to_decrypt = false; if (!ncch_header.no_crypto) { is_encrypted = true; // Find primary and secondary keys if (ncch_header.fixed_key) { LOG_DEBUG(Service_FS, "Fixed-key crypto"); primary_key.fill(0); secondary_key.fill(0); } else { using namespace HW::AES; InitKeys(); std::array key_y_primary, key_y_secondary; std::copy(ncch_header.signature, ncch_header.signature + key_y_primary.size(), key_y_primary.begin()); if (!ncch_header.seed_crypto) { key_y_secondary = key_y_primary; } else { auto opt{FileSys::GetSeed(ncch_header.program_id)}; if (!opt.has_value()) { LOG_ERROR(Service_FS, "Seed for program {:016X} not found", ncch_header.program_id); failed_to_decrypt = true; } else { auto seed{*opt}; std::array input; std::memcpy(input.data(), key_y_primary.data(), key_y_primary.size()); std::memcpy(input.data() + key_y_primary.size(), seed.data(), seed.size()); CryptoPP::SHA256 sha; std::array hash; sha.CalculateDigest(hash.data(), input.data(), input.size()); std::memcpy(key_y_secondary.data(), hash.data(), key_y_secondary.size()); } } SetKeyY(KeySlotID::NCCHSecure1, key_y_primary); if (!IsNormalKeyAvailable(KeySlotID::NCCHSecure1)) { LOG_ERROR(Service_FS, "Secure1 KeyX missing"); failed_to_decrypt = true; } primary_key = GetNormalKey(KeySlotID::NCCHSecure1); switch (ncch_header.secondary_key_slot) { case 0: LOG_DEBUG(Service_FS, "Secure1 crypto"); secondary_key = primary_key; break; case 1: LOG_DEBUG(Service_FS, "Secure2 crypto"); SetKeyY(KeySlotID::NCCHSecure2, key_y_secondary); if (!IsNormalKeyAvailable(KeySlotID::NCCHSecure2)) { LOG_ERROR(Service_FS, "Secure2 KeyX missing"); failed_to_decrypt = true; } secondary_key = GetNormalKey(KeySlotID::NCCHSecure2); break; case 10: LOG_DEBUG(Service_FS, "Secure3 crypto"); SetKeyY(KeySlotID::NCCHSecure3, key_y_secondary); if (!IsNormalKeyAvailable(KeySlotID::NCCHSecure3)) { LOG_ERROR(Service_FS, "Secure3 KeyX missing"); failed_to_decrypt = true; } secondary_key = GetNormalKey(KeySlotID::NCCHSecure3); break; case 11: LOG_DEBUG(Service_FS, "Secure4 crypto"); SetKeyY(KeySlotID::NCCHSecure4, key_y_secondary); if (!IsNormalKeyAvailable(KeySlotID::NCCHSecure4)) { LOG_ERROR(Service_FS, "Secure4 KeyX missing"); failed_to_decrypt = true; } secondary_key = GetNormalKey(KeySlotID::NCCHSecure4); break; } } // Find CTR for each section // Written with reference to // https://github.com/d0k3/GodMode9/blob/99af6a73be48fa7872649aaa7456136da0df7938/arm9/source/game/ncch.c#L34-L52 if (ncch_header.version == 0 || ncch_header.version == 2) { LOG_DEBUG(Loader, "NCCH version 0/2"); // In this version, CTR for each section is a magic number prefixed by partition ID // (reverse order) std::reverse_copy(ncch_header.partition_id, ncch_header.partition_id + 8, exheader_ctr.begin()); exefs_ctr = romfs_ctr = exheader_ctr; exheader_ctr[8] = 1; exefs_ctr[8] = 2; romfs_ctr[8] = 3; } else if (ncch_header.version == 1) { LOG_DEBUG(Loader, "NCCH version 1"); // In this version, CTR for each section is the section offset prefixed by partition // ID, as if the entire NCCH image is encrypted using a single CTR stream. std::copy(ncch_header.partition_id, ncch_header.partition_id + 8, exheader_ctr.begin()); exefs_ctr = romfs_ctr = exheader_ctr; auto u32ToBEArray = [](u32 value) -> std::array { return std::array{ static_cast(value >> 24), static_cast((value >> 16) & 0xFF), static_cast((value >> 8) & 0xFF), static_cast(value & 0xFF), }; }; auto offset_exheader = u32ToBEArray(0x200); // exheader offset auto offset_exefs = u32ToBEArray(ncch_header.exefs_offset * kBlockSize); auto offset_romfs = u32ToBEArray(ncch_header.romfs_offset * kBlockSize); std::copy(offset_exheader.begin(), offset_exheader.end(), exheader_ctr.begin() + 12); std::copy(offset_exefs.begin(), offset_exefs.end(), exefs_ctr.begin() + 12); std::copy(offset_romfs.begin(), offset_romfs.end(), romfs_ctr.begin() + 12); } else { LOG_ERROR(Service_FS, "Unknown NCCH version {}", ncch_header.version); failed_to_decrypt = true; } } else { LOG_DEBUG(Service_FS, "No crypto"); is_encrypted = false; } // System archives and DLC don't have an extended header but have RomFS if (ncch_header.extended_header_size) { auto read_exheader = [this](FileUtil::IOFile& file) { const std::size_t size = sizeof(exheader_header); return file && file.ReadBytes(&exheader_header, size) == size; }; FileUtil::IOFile exheader_override_file{filepath + ".exheader", "rb"}; if (read_exheader(exheader_override_file)) { is_tainted = true; } else if (!read_exheader(file)) { return Loader::ResultStatus::Error; } if (is_encrypted) { // This ID check is masked to low 32-bit as a toleration to ill-formed ROM created // by merging games and its updates. if ((exheader_header.system_info.jump_id & 0xFFFFFFFF) == (ncch_header.program_id & 0xFFFFFFFF)) { LOG_WARNING(Service_FS, "NCCH is marked as encrypted but with decrypted " "exheader. Force no crypto scheme."); is_encrypted = false; } else { if (failed_to_decrypt) { LOG_ERROR(Service_FS, "Failed to decrypt"); return Loader::ResultStatus::ErrorEncrypted; } CryptoPP::byte* data = reinterpret_cast(&exheader_header); CryptoPP::CTR_Mode::Decryption( primary_key.data(), primary_key.size(), exheader_ctr.data()) .ProcessData(data, data, sizeof(exheader_header)); } } is_compressed = (exheader_header.codeset_info.flags.flag & 1) == 1; u32 entry_point = exheader_header.codeset_info.text.address; u32 code_size = exheader_header.codeset_info.text.code_size; u32 stack_size = exheader_header.codeset_info.stack_size; u32 bss_size = exheader_header.codeset_info.bss_size; u32 core_version = exheader_header.arm11_system_local_caps.core_version; u8 priority = exheader_header.arm11_system_local_caps.priority; u8 resource_limit_category = exheader_header.arm11_system_local_caps.resource_limit_category; LOG_DEBUG(Service_FS, "Name: {}", exheader_header.codeset_info.name); LOG_DEBUG(Service_FS, "Program ID: {:016X}", ncch_header.program_id); LOG_DEBUG(Service_FS, "Code compressed: {}", is_compressed ? "yes" : "no"); LOG_DEBUG(Service_FS, "Entry point: 0x{:08X}", entry_point); LOG_DEBUG(Service_FS, "Code size: 0x{:08X}", code_size); LOG_DEBUG(Service_FS, "Stack size: 0x{:08X}", stack_size); LOG_DEBUG(Service_FS, "Bss size: 0x{:08X}", bss_size); LOG_DEBUG(Service_FS, "Core version: {}", core_version); LOG_DEBUG(Service_FS, "Thread priority: 0x{:X}", priority); LOG_DEBUG(Service_FS, "Resource limit category: {}", resource_limit_category); LOG_DEBUG(Service_FS, "System Mode: {}", static_cast(exheader_header.arm11_system_local_caps.system_mode)); has_exheader = true; } // DLC can have an ExeFS and a RomFS but no extended header if (ncch_header.exefs_size) { exefs_offset = ncch_header.exefs_offset * kBlockSize; u32 exefs_size = ncch_header.exefs_size * kBlockSize; LOG_DEBUG(Service_FS, "ExeFS offset: 0x{:08X}", exefs_offset); LOG_DEBUG(Service_FS, "ExeFS size: 0x{:08X}", exefs_size); file.Seek(exefs_offset + ncch_offset, SEEK_SET); if (file.ReadBytes(&exefs_header, sizeof(ExeFs_Header)) != sizeof(ExeFs_Header)) return Loader::ResultStatus::Error; if (is_encrypted) { CryptoPP::byte* data = reinterpret_cast(&exefs_header); CryptoPP::CTR_Mode::Decryption(primary_key.data(), primary_key.size(), exefs_ctr.data()) .ProcessData(data, data, sizeof(exefs_header)); } exefs_file = FileUtil::IOFile(filepath, "rb"); has_exefs = true; } if (ncch_header.romfs_offset != 0 && ncch_header.romfs_size != 0) has_romfs = true; } LoadOverrides(); // We need at least one of these or overrides, practically if (!(has_exefs || has_romfs || is_tainted)) return Loader::ResultStatus::Error; is_loaded = true; return Loader::ResultStatus::Success; } Loader::ResultStatus NCCHContainer::LoadOverrides() { // Check for split-off files, mark the archive as tainted if we will use them std::string romfs_override = filepath + ".romfs"; if (FileUtil::Exists(romfs_override)) { is_tainted = true; } // If we have a split-off exefs file/folder, it takes priority std::string exefs_override = filepath + ".exefs"; std::string exefsdir_override = filepath + ".exefsdir/"; if (FileUtil::Exists(exefs_override)) { exefs_file = FileUtil::IOFile(exefs_override, "rb"); if (exefs_file.ReadBytes(&exefs_header, sizeof(ExeFs_Header)) == sizeof(ExeFs_Header)) { LOG_DEBUG(Service_FS, "Loading ExeFS section from {}", exefs_override); exefs_offset = 0; is_tainted = true; has_exefs = true; } else { exefs_file = FileUtil::IOFile(filepath, "rb"); } } else if (FileUtil::Exists(exefsdir_override) && FileUtil::IsDirectory(exefsdir_override)) { is_tainted = true; } if (is_tainted) LOG_WARNING(Service_FS, "Loaded NCCH {} is tainted, application behavior may not be as expected!", filepath); return Loader::ResultStatus::Success; } Loader::ResultStatus NCCHContainer::LoadSectionExeFS(const char* name, std::vector& buffer) { Loader::ResultStatus result = Load(); if (result != Loader::ResultStatus::Success) return result; // Check if we have files that can drop-in and replace result = LoadOverrideExeFSSection(name, buffer); if (result == Loader::ResultStatus::Success || !has_exefs) return result; // As of firmware 5.0.0-11 the logo is stored between the access descriptor and the plain region // instead of the ExeFS. if (std::strcmp(name, "logo") == 0) { if (ncch_header.logo_region_offset && ncch_header.logo_region_size) { std::size_t logo_offset = ncch_header.logo_region_offset * kBlockSize; std::size_t logo_size = ncch_header.logo_region_size * kBlockSize; buffer.resize(logo_size); file.Seek(ncch_offset + logo_offset, SEEK_SET); if (file.ReadBytes(buffer.data(), logo_size) != logo_size) { LOG_ERROR(Service_FS, "Could not read NCCH logo"); return Loader::ResultStatus::Error; } return Loader::ResultStatus::Success; } else { LOG_INFO(Service_FS, "Attempting to load logo from the ExeFS"); } } // If we don't have any separate files, we'll need a full ExeFS if (!exefs_file.IsOpen()) return Loader::ResultStatus::Error; LOG_DEBUG(Service_FS, "{} sections:", kMaxSections); // Iterate through the ExeFs archive until we find a section with the specified name... for (unsigned section_number = 0; section_number < kMaxSections; section_number++) { const auto& section = exefs_header.section[section_number]; // Load the specified section... if (strcmp(section.name, name) == 0) { LOG_DEBUG(Service_FS, "{} - offset: 0x{:08X}, size: 0x{:08X}, name: {}", section_number, section.offset, section.size, section.name); s64 section_offset = (section.offset + exefs_offset + sizeof(ExeFs_Header) + ncch_offset); exefs_file.Seek(section_offset, SEEK_SET); std::array key; if (strcmp(section.name, "icon") == 0 || strcmp(section.name, "banner") == 0) { key = primary_key; } else { key = secondary_key; } CryptoPP::CTR_Mode::Decryption dec(key.data(), key.size(), exefs_ctr.data()); dec.Seek(section.offset + sizeof(ExeFs_Header)); if (strcmp(section.name, ".code") == 0 && is_compressed) { // Section is compressed, read compressed .code section... std::unique_ptr temp_buffer; try { temp_buffer.reset(new u8[section.size]); } catch (std::bad_alloc&) { return Loader::ResultStatus::ErrorMemoryAllocationFailed; } if (exefs_file.ReadBytes(&temp_buffer[0], section.size) != section.size) return Loader::ResultStatus::Error; if (is_encrypted) { dec.ProcessData(&temp_buffer[0], &temp_buffer[0], section.size); } // Decompress .code section... u32 decompressed_size = LZSS_GetDecompressedSize(&temp_buffer[0], section.size); buffer.resize(decompressed_size); if (!LZSS_Decompress(&temp_buffer[0], section.size, &buffer[0], decompressed_size)) return Loader::ResultStatus::ErrorInvalidFormat; } else { // Section is uncompressed... buffer.resize(section.size); if (exefs_file.ReadBytes(&buffer[0], section.size) != section.size) return Loader::ResultStatus::Error; if (is_encrypted) { dec.ProcessData(&buffer[0], &buffer[0], section.size); } } return Loader::ResultStatus::Success; } } return Loader::ResultStatus::ErrorNotUsed; } bool NCCHContainer::ApplyIPSPatch(std::vector& code) const { const std::string override_ips = filepath + ".exefsdir/code.ips"; FileUtil::IOFile ips_file{override_ips, "rb"}; if (!ips_file) return false; std::vector ips(ips_file.GetSize()); if (ips_file.ReadBytes(ips.data(), ips.size()) != ips.size()) return false; LOG_INFO(Service_FS, "File {} patching code.bin", override_ips); ApplyIPS(ips, code); return true; } Loader::ResultStatus NCCHContainer::LoadOverrideExeFSSection(const char* name, std::vector& buffer) { std::string override_name; // Map our section name to the extracted equivalent if (!strcmp(name, ".code")) override_name = "code.bin"; else if (!strcmp(name, "icon")) override_name = "icon.bin"; else if (!strcmp(name, "banner")) override_name = "banner.bnr"; else if (!strcmp(name, "logo")) override_name = "logo.bcma.lz"; else return Loader::ResultStatus::Error; std::string section_override = filepath + ".exefsdir/" + override_name; FileUtil::IOFile section_file(section_override, "rb"); if (section_file.IsOpen()) { auto section_size = section_file.GetSize(); buffer.resize(section_size); section_file.Seek(0, SEEK_SET); if (section_file.ReadBytes(&buffer[0], section_size) == section_size) { LOG_WARNING(Service_FS, "File {} overriding built-in ExeFS file", section_override); return Loader::ResultStatus::Success; } } return Loader::ResultStatus::ErrorNotUsed; } Loader::ResultStatus NCCHContainer::ReadRomFS(std::shared_ptr& romfs_file) { Loader::ResultStatus result = Load(); if (result != Loader::ResultStatus::Success) return result; if (ReadOverrideRomFS(romfs_file) == Loader::ResultStatus::Success) return Loader::ResultStatus::Success; if (!has_romfs) { LOG_DEBUG(Service_FS, "RomFS requested from NCCH which has no RomFS"); return Loader::ResultStatus::ErrorNotUsed; } if (!file.IsOpen()) return Loader::ResultStatus::Error; u32 romfs_offset = ncch_offset + (ncch_header.romfs_offset * kBlockSize) + 0x1000; u32 romfs_size = (ncch_header.romfs_size * kBlockSize) - 0x1000; LOG_DEBUG(Service_FS, "RomFS offset: 0x{:08X}", romfs_offset); LOG_DEBUG(Service_FS, "RomFS size: 0x{:08X}", romfs_size); if (file.GetSize() < romfs_offset + romfs_size) return Loader::ResultStatus::Error; // We reopen the file, to allow its position to be independent from file's FileUtil::IOFile romfs_file_inner(filepath, "rb"); if (!romfs_file_inner.IsOpen()) return Loader::ResultStatus::Error; if (is_encrypted) { romfs_file = std::make_shared(std::move(romfs_file_inner), romfs_offset, romfs_size, secondary_key, romfs_ctr, 0x1000); } else { romfs_file = std::make_shared(std::move(romfs_file_inner), romfs_offset, romfs_size); } return Loader::ResultStatus::Success; } Loader::ResultStatus NCCHContainer::ReadOverrideRomFS(std::shared_ptr& romfs_file) { // Check for RomFS overrides std::string split_filepath = filepath + ".romfs"; if (FileUtil::Exists(split_filepath)) { FileUtil::IOFile romfs_file_inner(split_filepath, "rb"); if (romfs_file_inner.IsOpen()) { LOG_WARNING(Service_FS, "File {} overriding built-in RomFS", split_filepath); romfs_file = std::make_shared(std::move(romfs_file_inner), 0, romfs_file_inner.GetSize()); return Loader::ResultStatus::Success; } } return Loader::ResultStatus::ErrorNotUsed; } Loader::ResultStatus NCCHContainer::ReadProgramId(u64_le& program_id) { Loader::ResultStatus result = Load(); if (result != Loader::ResultStatus::Success) return result; if (!has_header) return Loader::ResultStatus::ErrorNotUsed; program_id = ncch_header.program_id; return Loader::ResultStatus::Success; } Loader::ResultStatus NCCHContainer::ReadExtdataId(u64& extdata_id) { Loader::ResultStatus result = Load(); if (result != Loader::ResultStatus::Success) return result; if (!has_exheader) return Loader::ResultStatus::ErrorNotUsed; if (exheader_header.arm11_system_local_caps.storage_info.other_attributes >> 1) { // Using extended save data access // There would be multiple possible extdata IDs in this case. The best we can do for now is // guessing that the first one would be the main save. const std::array extdata_ids{{ exheader_header.arm11_system_local_caps.storage_info.extdata_id0.Value(), exheader_header.arm11_system_local_caps.storage_info.extdata_id1.Value(), exheader_header.arm11_system_local_caps.storage_info.extdata_id2.Value(), exheader_header.arm11_system_local_caps.storage_info.extdata_id3.Value(), exheader_header.arm11_system_local_caps.storage_info.extdata_id4.Value(), exheader_header.arm11_system_local_caps.storage_info.extdata_id5.Value(), }}; for (u64 id : extdata_ids) { if (id) { // Found a non-zero ID, use it extdata_id = id; return Loader::ResultStatus::Success; } } return Loader::ResultStatus::ErrorNotUsed; } extdata_id = exheader_header.arm11_system_local_caps.storage_info.ext_save_data_id; return Loader::ResultStatus::Success; } bool NCCHContainer::HasExeFS() { Loader::ResultStatus result = Load(); if (result != Loader::ResultStatus::Success) return false; return has_exefs; } bool NCCHContainer::HasRomFS() { Loader::ResultStatus result = Load(); if (result != Loader::ResultStatus::Success) return false; return has_romfs; } bool NCCHContainer::HasExHeader() { Loader::ResultStatus result = Load(); if (result != Loader::ResultStatus::Success) return false; return has_exheader; } } // namespace FileSys