// Copyright 2015 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #pragma once #include #include #include #include #include #include "common/common_types.h" #include "common/hash.h" #include "video_core/pica.h" #include "video_core/rasterizer_interface.h" #include "video_core/renderer_opengl/gl_rasterizer_cache.h" #include "video_core/renderer_opengl/gl_state.h" #include "video_core/shader/shader_interpreter.h" /** * This struct contains all state used to generate the GLSL shader program that emulates the current * Pica register configuration. This struct is used as a cache key for generated GLSL shader * programs. The functions in gl_shader_gen.cpp should retrieve state from this struct only, not by * directly accessing Pica registers. This should reduce the risk of bugs in shader generation where * Pica state is not being captured in the shader cache key, thereby resulting in (what should be) * two separate shaders sharing the same key. */ struct PicaShaderConfig { /// Construct a PicaShaderConfig with the current Pica register configuration. static PicaShaderConfig CurrentConfig() { PicaShaderConfig res; const auto& regs = Pica::g_state.regs; res.alpha_test_func = regs.output_merger.alpha_test.enable ? regs.output_merger.alpha_test.func.Value() : Pica::Regs::CompareFunc::Always; // Copy relevant TevStageConfig fields only. We're doing this manually (instead of calling // the GetTevStages() function) because BitField explicitly disables copies. res.tev_stages[0].sources_raw = regs.tev_stage0.sources_raw; res.tev_stages[1].sources_raw = regs.tev_stage1.sources_raw; res.tev_stages[2].sources_raw = regs.tev_stage2.sources_raw; res.tev_stages[3].sources_raw = regs.tev_stage3.sources_raw; res.tev_stages[4].sources_raw = regs.tev_stage4.sources_raw; res.tev_stages[5].sources_raw = regs.tev_stage5.sources_raw; res.tev_stages[0].modifiers_raw = regs.tev_stage0.modifiers_raw; res.tev_stages[1].modifiers_raw = regs.tev_stage1.modifiers_raw; res.tev_stages[2].modifiers_raw = regs.tev_stage2.modifiers_raw; res.tev_stages[3].modifiers_raw = regs.tev_stage3.modifiers_raw; res.tev_stages[4].modifiers_raw = regs.tev_stage4.modifiers_raw; res.tev_stages[5].modifiers_raw = regs.tev_stage5.modifiers_raw; res.tev_stages[0].ops_raw = regs.tev_stage0.ops_raw; res.tev_stages[1].ops_raw = regs.tev_stage1.ops_raw; res.tev_stages[2].ops_raw = regs.tev_stage2.ops_raw; res.tev_stages[3].ops_raw = regs.tev_stage3.ops_raw; res.tev_stages[4].ops_raw = regs.tev_stage4.ops_raw; res.tev_stages[5].ops_raw = regs.tev_stage5.ops_raw; res.tev_stages[0].scales_raw = regs.tev_stage0.scales_raw; res.tev_stages[1].scales_raw = regs.tev_stage1.scales_raw; res.tev_stages[2].scales_raw = regs.tev_stage2.scales_raw; res.tev_stages[3].scales_raw = regs.tev_stage3.scales_raw; res.tev_stages[4].scales_raw = regs.tev_stage4.scales_raw; res.tev_stages[5].scales_raw = regs.tev_stage5.scales_raw; res.combiner_buffer_input = regs.tev_combiner_buffer_input.update_mask_rgb.Value() | regs.tev_combiner_buffer_input.update_mask_a.Value() << 4; // Fragment lighting res.lighting_enabled = !regs.lighting.disable; res.num_lights = regs.lighting.src_num + 1; for (unsigned light_index = 0; light_index < res.num_lights; ++light_index) { unsigned num = regs.lighting.light_enable.GetNum(light_index); const auto& light = regs.lighting.light[num]; res.light_src[light_index].num = num; res.light_src[light_index].directional = light.w; res.light_src[light_index].two_sided_diffuse = light.two_sided_diffuse; res.light_src[light_index].dist_atten_enabled = regs.lighting.dist_atten_enable.IsEnabled(num); res.light_src[light_index].dist_atten_bias = Pica::float20::FromRawFloat20(light.dist_atten_bias).ToFloat32(); res.light_src[light_index].dist_atten_scale = Pica::float20::FromRawFloat20(light.dist_atten_scale).ToFloat32(); } res.lighting_lut.d0_abs = (regs.lighting.abs_lut_input.d0 == 0); res.lighting_lut.d0_type = (Pica::Regs::LightingLutInput)regs.lighting.lut_input.d0.Value(); res.clamp_highlights = regs.lighting.light_env.clamp_highlights; return res; } bool TevStageUpdatesCombinerBufferColor(unsigned stage_index) const { return (stage_index < 4) && (combiner_buffer_input & (1 << stage_index)); } bool TevStageUpdatesCombinerBufferAlpha(unsigned stage_index) const { return (stage_index < 4) && ((combiner_buffer_input >> 4) & (1 << stage_index)); } bool operator ==(const PicaShaderConfig& o) const { return std::memcmp(this, &o, sizeof(PicaShaderConfig)) == 0; }; struct { Pica::Regs::CompareFunc alpha_test_func = Pica::Regs::CompareFunc::Never; std::array tev_stages = {}; u8 combiner_buffer_input = 0; struct { unsigned num = 0; bool directional = false; bool two_sided_diffuse = false; bool dist_atten_enabled = false; GLfloat dist_atten_scale = 0.0f; GLfloat dist_atten_bias = 0.0f; } light_src[8]; bool lighting_enabled = false; unsigned num_lights = 0; bool clamp_highlights = false; struct { bool d0_abs = false; Pica::Regs::LightingLutInput d0_type = Pica::Regs::LightingLutInput::NH; } lighting_lut; }; }; namespace std { template <> struct hash { size_t operator()(const PicaShaderConfig& k) const { return Common::ComputeHash64(&k, sizeof(PicaShaderConfig)); } }; } // namespace std class RasterizerOpenGL : public VideoCore::RasterizerInterface { public: RasterizerOpenGL(); ~RasterizerOpenGL() override; void InitObjects() override; void Reset() override; void AddTriangle(const Pica::Shader::OutputVertex& v0, const Pica::Shader::OutputVertex& v1, const Pica::Shader::OutputVertex& v2) override; void DrawTriangles() override; void FlushFramebuffer() override; void NotifyPicaRegisterChanged(u32 id) override; void FlushRegion(PAddr addr, u32 size) override; void InvalidateRegion(PAddr addr, u32 size) override; /// OpenGL shader generated for a given Pica register state struct PicaShader { /// OpenGL shader resource OGLShader shader; }; private: /// Structure used for storing information about color textures struct TextureInfo { OGLTexture texture; GLsizei width; GLsizei height; Pica::Regs::ColorFormat format; GLenum gl_format; GLenum gl_type; }; /// Structure used for storing information about depth textures struct DepthTextureInfo { OGLTexture texture; GLsizei width; GLsizei height; Pica::Regs::DepthFormat format; GLenum gl_format; GLenum gl_type; }; struct SamplerInfo { using TextureConfig = Pica::Regs::TextureConfig; OGLSampler sampler; /// Creates the sampler object, initializing its state so that it's in sync with the SamplerInfo struct. void Create(); /// Syncs the sampler object with the config, updating any necessary state. void SyncWithConfig(const TextureConfig& config); private: TextureConfig::TextureFilter mag_filter; TextureConfig::TextureFilter min_filter; TextureConfig::WrapMode wrap_s; TextureConfig::WrapMode wrap_t; u32 border_color; }; /// Structure that the hardware rendered vertices are composed of struct HardwareVertex { HardwareVertex(const Pica::Shader::OutputVertex& v) { position[0] = v.pos.x.ToFloat32(); position[1] = v.pos.y.ToFloat32(); position[2] = v.pos.z.ToFloat32(); position[3] = v.pos.w.ToFloat32(); color[0] = v.color.x.ToFloat32(); color[1] = v.color.y.ToFloat32(); color[2] = v.color.z.ToFloat32(); color[3] = v.color.w.ToFloat32(); tex_coord0[0] = v.tc0.x.ToFloat32(); tex_coord0[1] = v.tc0.y.ToFloat32(); tex_coord1[0] = v.tc1.x.ToFloat32(); tex_coord1[1] = v.tc1.y.ToFloat32(); tex_coord2[0] = v.tc2.x.ToFloat32(); tex_coord2[1] = v.tc2.y.ToFloat32(); normquat[0] = v.quat.x.ToFloat32(); normquat[1] = v.quat.y.ToFloat32(); normquat[2] = v.quat.z.ToFloat32(); normquat[3] = v.quat.w.ToFloat32(); view[0] = v.view.x.ToFloat32(); view[1] = v.view.y.ToFloat32(); view[2] = v.view.z.ToFloat32(); } GLfloat position[4]; GLfloat color[4]; GLfloat tex_coord0[2]; GLfloat tex_coord1[2]; GLfloat tex_coord2[2]; GLfloat normquat[4]; GLfloat view[3]; }; struct LightSrc { std::array specular_0; INSERT_PADDING_WORDS(1); std::array specular_1; INSERT_PADDING_WORDS(1); std::array diffuse; INSERT_PADDING_WORDS(1); std::array ambient; INSERT_PADDING_WORDS(1); std::array position; INSERT_PADDING_WORDS(1); }; /// Uniform structure for the Uniform Buffer Object, all members must be 16-byte aligned struct UniformData { // A vec4 color for each of the six tev stages std::array const_color[6]; std::array tev_combiner_buffer_color; GLint alphatest_ref; GLfloat depth_offset; INSERT_PADDING_WORDS(2); std::array lighting_global_ambient; INSERT_PADDING_WORDS(1); LightSrc light_src[8]; std::array, 256>, 6> lighting_lut; }; static_assert(sizeof(UniformData) == 0x6210, "The size of the UniformData structure has changed, update the structure in the shader"); static_assert(sizeof(UniformData) < 32768, "UniformData structure must be less than 32kb"); /// Reconfigure the OpenGL color texture to use the given format and dimensions void ReconfigureColorTexture(TextureInfo& texture, Pica::Regs::ColorFormat format, u32 width, u32 height); /// Reconfigure the OpenGL depth texture to use the given format and dimensions void ReconfigureDepthTexture(DepthTextureInfo& texture, Pica::Regs::DepthFormat format, u32 width, u32 height); /// Sets the OpenGL shader in accordance with the current PICA register state void SetShader(); /// Syncs the state and contents of the OpenGL framebuffer to match the current PICA framebuffer void SyncFramebuffer(); /// Syncs the cull mode to match the PICA register void SyncCullMode(); /// Syncs the depth scale and offset to match the PICA registers void SyncDepthModifiers(); /// Syncs the blend enabled status to match the PICA register void SyncBlendEnabled(); /// Syncs the blend functions to match the PICA register void SyncBlendFuncs(); /// Syncs the blend color to match the PICA register void SyncBlendColor(); /// Syncs the alpha test states to match the PICA register void SyncAlphaTest(); /// Syncs the logic op states to match the PICA register void SyncLogicOp(); /// Syncs the stencil test states to match the PICA register void SyncStencilTest(); /// Syncs the depth test states to match the PICA register void SyncDepthTest(); /// Syncs the TEV constant color to match the PICA register void SyncTevConstColor(int tev_index, const Pica::Regs::TevStageConfig& tev_stage); /// Syncs the TEV combiner color buffer to match the PICA register void SyncCombinerColor(); /// Syncs the lighting global ambient color to match the PICA register void SyncGlobalAmbient(); /// Syncs the lighting lookup tables void SyncLightingLUT(unsigned index); /// Syncs the specified light's diffuse color to match the PICA register void SyncLightDiffuse(int light_index); /// Syncs the specified light's ambient color to match the PICA register void SyncLightAmbient(int light_index); /// Syncs the specified light's position to match the PICA register void SyncLightPosition(int light_index); /// Syncs the specified light's specular 0 color to match the PICA register void SyncLightSpecular0(int light_index); /// Syncs the specified light's specular 1 color to match the PICA register void SyncLightSpecular1(int light_index); /// Syncs the remaining OpenGL drawing state to match the current PICA state void SyncDrawState(); /// Copies the 3DS color framebuffer into the OpenGL color framebuffer texture void ReloadColorBuffer(); /// Copies the 3DS depth framebuffer into the OpenGL depth framebuffer texture void ReloadDepthBuffer(); /** * Save the current OpenGL color framebuffer to the current PICA framebuffer in 3DS memory * Loads the OpenGL framebuffer textures into temporary buffers * Then copies into the 3DS framebuffer using proper Morton order */ void CommitColorBuffer(); /** * Save the current OpenGL depth framebuffer to the current PICA framebuffer in 3DS memory * Loads the OpenGL framebuffer textures into temporary buffers * Then copies into the 3DS framebuffer using proper Morton order */ void CommitDepthBuffer(); RasterizerCacheOpenGL res_cache; std::vector vertex_batch; OpenGLState state; PAddr cached_fb_color_addr; PAddr cached_fb_depth_addr; // Hardware rasterizer std::array texture_samplers; TextureInfo fb_color_texture; DepthTextureInfo fb_depth_texture; std::unordered_map> shader_cache; const PicaShader* current_shader = nullptr; struct { UniformData data; bool lut_dirty[24]; bool dirty; } uniform_block_data; OGLVertexArray vertex_array; OGLBuffer vertex_buffer; OGLBuffer uniform_buffer; OGLFramebuffer framebuffer; };