citra/src/core/hle/svc.cpp
Subv 5b7f86708c Kernel/Threading: Warn when a thread can be scheduled in the Syscore (Core 1).
We do not currently implement any cores other than the AppCore (Core 0).
2016-05-07 10:23:03 -05:00

1065 lines
40 KiB
C++

// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <map>
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "common/profiler.h"
#include "common/string_util.h"
#include "common/symbols.h"
#include "core/core_timing.h"
#include "core/arm/arm_interface.h"
#include "core/hle/kernel/address_arbiter.h"
#include "core/hle/kernel/event.h"
#include "core/hle/kernel/memory.h"
#include "core/hle/kernel/mutex.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/semaphore.h"
#include "core/hle/kernel/shared_memory.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/timer.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/hle/function_wrappers.h"
#include "core/hle/result.h"
#include "core/hle/service/service.h"
////////////////////////////////////////////////////////////////////////////////////////////////////
// Namespace SVC
using Kernel::SharedPtr;
using Kernel::ERR_INVALID_HANDLE;
namespace SVC {
const ResultCode ERR_NOT_FOUND(ErrorDescription::NotFound, ErrorModule::Kernel,
ErrorSummary::NotFound, ErrorLevel::Permanent); // 0xD88007FA
const ResultCode ERR_PORT_NAME_TOO_LONG(ErrorDescription(30), ErrorModule::OS,
ErrorSummary::InvalidArgument, ErrorLevel::Usage); // 0xE0E0181E
const ResultCode ERR_MISALIGNED_ADDRESS{ // 0xE0E01BF1
ErrorDescription::MisalignedAddress, ErrorModule::OS,
ErrorSummary::InvalidArgument, ErrorLevel::Usage};
const ResultCode ERR_MISALIGNED_SIZE{ // 0xE0E01BF2
ErrorDescription::MisalignedSize, ErrorModule::OS,
ErrorSummary::InvalidArgument, ErrorLevel::Usage};
const ResultCode ERR_INVALID_COMBINATION{ // 0xE0E01BEE
ErrorDescription::InvalidCombination, ErrorModule::OS,
ErrorSummary::InvalidArgument, ErrorLevel::Usage};
enum ControlMemoryOperation {
MEMOP_FREE = 1,
MEMOP_RESERVE = 2, // This operation seems to be unsupported in the kernel
MEMOP_COMMIT = 3,
MEMOP_MAP = 4,
MEMOP_UNMAP = 5,
MEMOP_PROTECT = 6,
MEMOP_OPERATION_MASK = 0xFF,
MEMOP_REGION_APP = 0x100,
MEMOP_REGION_SYSTEM = 0x200,
MEMOP_REGION_BASE = 0x300,
MEMOP_REGION_MASK = 0xF00,
MEMOP_LINEAR = 0x10000,
};
/// Map application or GSP heap memory
static ResultCode ControlMemory(u32* out_addr, u32 operation, u32 addr0, u32 addr1, u32 size, u32 permissions) {
using namespace Kernel;
LOG_DEBUG(Kernel_SVC,"called operation=0x%08X, addr0=0x%08X, addr1=0x%08X, size=0x%X, permissions=0x%08X",
operation, addr0, addr1, size, permissions);
if ((addr0 & Memory::PAGE_MASK) != 0 || (addr1 & Memory::PAGE_MASK) != 0) {
return ERR_MISALIGNED_ADDRESS;
}
if ((size & Memory::PAGE_MASK) != 0) {
return ERR_MISALIGNED_SIZE;
}
u32 region = operation & MEMOP_REGION_MASK;
operation &= ~MEMOP_REGION_MASK;
if (region != 0) {
LOG_WARNING(Kernel_SVC, "ControlMemory with specified region not supported, region=%X", region);
}
if ((permissions & (u32)MemoryPermission::ReadWrite) != permissions) {
return ERR_INVALID_COMBINATION;
}
VMAPermission vma_permissions = (VMAPermission)permissions;
auto& process = *g_current_process;
switch (operation & MEMOP_OPERATION_MASK) {
case MEMOP_FREE:
{
if (addr0 >= Memory::HEAP_VADDR && addr0 < Memory::HEAP_VADDR_END) {
ResultCode result = process.HeapFree(addr0, size);
if (result.IsError()) return result;
} else if (addr0 >= process.GetLinearHeapBase() && addr0 < process.GetLinearHeapLimit()) {
ResultCode result = process.LinearFree(addr0, size);
if (result.IsError()) return result;
} else {
return ERR_INVALID_ADDRESS;
}
*out_addr = addr0;
break;
}
case MEMOP_COMMIT:
{
if (operation & MEMOP_LINEAR) {
CASCADE_RESULT(*out_addr, process.LinearAllocate(addr0, size, vma_permissions));
} else {
CASCADE_RESULT(*out_addr, process.HeapAllocate(addr0, size, vma_permissions));
}
break;
}
case MEMOP_MAP: // TODO: This is just a hack to avoid regressions until memory aliasing is implemented
{
CASCADE_RESULT(*out_addr, process.HeapAllocate(addr0, size, vma_permissions));
break;
}
case MEMOP_UNMAP: // TODO: This is just a hack to avoid regressions until memory aliasing is implemented
{
ResultCode result = process.HeapFree(addr0, size);
if (result.IsError()) return result;
break;
}
case MEMOP_PROTECT:
{
ResultCode result = process.vm_manager.ReprotectRange(addr0, size, vma_permissions);
if (result.IsError()) return result;
break;
}
default:
LOG_ERROR(Kernel_SVC, "unknown operation=0x%08X", operation);
return ERR_INVALID_COMBINATION;
}
process.vm_manager.LogLayout(Log::Level::Trace);
return RESULT_SUCCESS;
}
/// Maps a memory block to specified address
static ResultCode MapMemoryBlock(Handle handle, u32 addr, u32 permissions, u32 other_permissions) {
using Kernel::SharedMemory;
using Kernel::MemoryPermission;
LOG_TRACE(Kernel_SVC, "called memblock=0x%08X, addr=0x%08X, mypermissions=0x%08X, otherpermission=%d",
handle, addr, permissions, other_permissions);
// TODO(Subv): The same process that created a SharedMemory object can not map it in its own address space
SharedPtr<SharedMemory> shared_memory = Kernel::g_handle_table.Get<SharedMemory>(handle);
if (shared_memory == nullptr)
return ERR_INVALID_HANDLE;
MemoryPermission permissions_type = static_cast<MemoryPermission>(permissions);
switch (permissions_type) {
case MemoryPermission::Read:
case MemoryPermission::Write:
case MemoryPermission::ReadWrite:
case MemoryPermission::Execute:
case MemoryPermission::ReadExecute:
case MemoryPermission::WriteExecute:
case MemoryPermission::ReadWriteExecute:
case MemoryPermission::DontCare:
return shared_memory->Map(addr, permissions_type,
static_cast<MemoryPermission>(other_permissions));
default:
LOG_ERROR(Kernel_SVC, "unknown permissions=0x%08X", permissions);
}
return ResultCode(ErrorDescription::InvalidCombination, ErrorModule::OS, ErrorSummary::InvalidArgument, ErrorLevel::Usage);
}
static ResultCode UnmapMemoryBlock(Handle handle, u32 addr) {
using Kernel::SharedMemory;
LOG_TRACE(Kernel_SVC, "called memblock=0x%08X, addr=0x%08X", handle, addr);
// TODO(Subv): Return E0A01BF5 if the address is not in the application's heap
SharedPtr<SharedMemory> shared_memory = Kernel::g_handle_table.Get<SharedMemory>(handle);
if (shared_memory == nullptr)
return ERR_INVALID_HANDLE;
return shared_memory->Unmap(addr);
}
/// Connect to an OS service given the port name, returns the handle to the port to out
static ResultCode ConnectToPort(Handle* out_handle, const char* port_name) {
if (port_name == nullptr)
return ERR_NOT_FOUND;
if (std::strlen(port_name) > 11)
return ERR_PORT_NAME_TOO_LONG;
LOG_TRACE(Kernel_SVC, "called port_name=%s", port_name);
auto it = Service::g_kernel_named_ports.find(port_name);
if (it == Service::g_kernel_named_ports.end()) {
LOG_WARNING(Kernel_SVC, "tried to connect to unknown port: %s", port_name);
return ERR_NOT_FOUND;
}
CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(it->second));
return RESULT_SUCCESS;
}
/// Synchronize to an OS service
static ResultCode SendSyncRequest(Handle handle) {
SharedPtr<Kernel::Session> session = Kernel::g_handle_table.Get<Kernel::Session>(handle);
if (session == nullptr) {
return ERR_INVALID_HANDLE;
}
LOG_TRACE(Kernel_SVC, "called handle=0x%08X(%s)", handle, session->GetName().c_str());
return session->SyncRequest().Code();
}
/// Close a handle
static ResultCode CloseHandle(Handle handle) {
LOG_TRACE(Kernel_SVC, "Closing handle 0x%08X", handle);
return Kernel::g_handle_table.Close(handle);
}
/// Wait for a handle to synchronize, timeout after the specified nanoseconds
static ResultCode WaitSynchronization1(Handle handle, s64 nano_seconds) {
auto object = Kernel::g_handle_table.GetWaitObject(handle);
Kernel::Thread* thread = Kernel::GetCurrentThread();
thread->waitsynch_waited = false;
if (object == nullptr)
return ERR_INVALID_HANDLE;
LOG_TRACE(Kernel_SVC, "called handle=0x%08X(%s:%s), nanoseconds=%lld", handle,
object->GetTypeName().c_str(), object->GetName().c_str(), nano_seconds);
HLE::Reschedule(__func__);
// Check for next thread to schedule
if (object->ShouldWait()) {
object->AddWaitingThread(thread);
Kernel::WaitCurrentThread_WaitSynchronization({ object }, false, false);
// Create an event to wake the thread up after the specified nanosecond delay has passed
thread->WakeAfterDelay(nano_seconds);
// NOTE: output of this SVC will be set later depending on how the thread resumes
return HLE::RESULT_INVALID;
}
object->Acquire();
return RESULT_SUCCESS;
}
/// Wait for the given handles to synchronize, timeout after the specified nanoseconds
static ResultCode WaitSynchronizationN(s32* out, Handle* handles, s32 handle_count, bool wait_all, s64 nano_seconds) {
bool wait_thread = !wait_all;
int handle_index = 0;
Kernel::Thread* thread = Kernel::GetCurrentThread();
bool was_waiting = thread->waitsynch_waited;
thread->waitsynch_waited = false;
// Check if 'handles' is invalid
if (handles == nullptr)
return ResultCode(ErrorDescription::InvalidPointer, ErrorModule::Kernel, ErrorSummary::InvalidArgument, ErrorLevel::Permanent);
// NOTE: on real hardware, there is no nullptr check for 'out' (tested with firmware 4.4). If
// this happens, the running application will crash.
ASSERT_MSG(out != nullptr, "invalid output pointer specified!");
// Check if 'handle_count' is invalid
if (handle_count < 0)
return ResultCode(ErrorDescription::OutOfRange, ErrorModule::OS, ErrorSummary::InvalidArgument, ErrorLevel::Usage);
// If 'handle_count' is non-zero, iterate through each handle and wait the current thread if
// necessary
if (handle_count != 0) {
bool selected = false; // True once an object has been selected
Kernel::SharedPtr<Kernel::WaitObject> wait_object;
for (int i = 0; i < handle_count; ++i) {
auto object = Kernel::g_handle_table.GetWaitObject(handles[i]);
if (object == nullptr)
return ERR_INVALID_HANDLE;
// Check if the current thread should wait on this object...
if (object->ShouldWait()) {
// Check we are waiting on all objects...
if (wait_all)
// Wait the thread
wait_thread = true;
} else {
// Do not wait on this object, check if this object should be selected...
if (!wait_all && (!selected || (wait_object == object && was_waiting))) {
// Do not wait the thread
wait_thread = false;
handle_index = i;
wait_object = object;
selected = true;
}
}
}
} else {
// If no handles were passed in, put the thread to sleep only when 'wait_all' is false
// NOTE: This should deadlock the current thread if no timeout was specified
if (!wait_all) {
wait_thread = true;
}
}
HLE::Reschedule(__func__);
// If thread should wait, then set its state to waiting and then reschedule...
if (wait_thread) {
// Actually wait the current thread on each object if we decided to wait...
std::vector<SharedPtr<Kernel::WaitObject>> wait_objects;
wait_objects.reserve(handle_count);
for (int i = 0; i < handle_count; ++i) {
auto object = Kernel::g_handle_table.GetWaitObject(handles[i]);
object->AddWaitingThread(Kernel::GetCurrentThread());
wait_objects.push_back(object);
}
Kernel::WaitCurrentThread_WaitSynchronization(std::move(wait_objects), true, wait_all);
// Create an event to wake the thread up after the specified nanosecond delay has passed
Kernel::GetCurrentThread()->WakeAfterDelay(nano_seconds);
// NOTE: output of this SVC will be set later depending on how the thread resumes
return HLE::RESULT_INVALID;
}
// Acquire objects if we did not wait...
for (int i = 0; i < handle_count; ++i) {
auto object = Kernel::g_handle_table.GetWaitObject(handles[i]);
// Acquire the object if it is not waiting...
if (!object->ShouldWait()) {
object->Acquire();
// If this was the first non-waiting object and 'wait_all' is false, don't acquire
// any other objects
if (!wait_all)
break;
}
}
// TODO(bunnei): If 'wait_all' is true, this is probably wrong. However, real hardware does
// not seem to set it to any meaningful value.
*out = handle_count != 0 ? (wait_all ? -1 : handle_index) : 0;
return RESULT_SUCCESS;
}
/// Create an address arbiter (to allocate access to shared resources)
static ResultCode CreateAddressArbiter(Handle* out_handle) {
using Kernel::AddressArbiter;
SharedPtr<AddressArbiter> arbiter = AddressArbiter::Create();
CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(std::move(arbiter)));
LOG_TRACE(Kernel_SVC, "returned handle=0x%08X", *out_handle);
return RESULT_SUCCESS;
}
/// Arbitrate address
static ResultCode ArbitrateAddress(Handle handle, u32 address, u32 type, u32 value, s64 nanoseconds) {
using Kernel::AddressArbiter;
LOG_TRACE(Kernel_SVC, "called handle=0x%08X, address=0x%08X, type=0x%08X, value=0x%08X", handle,
address, type, value);
SharedPtr<AddressArbiter> arbiter = Kernel::g_handle_table.Get<AddressArbiter>(handle);
if (arbiter == nullptr)
return ERR_INVALID_HANDLE;
auto res = arbiter->ArbitrateAddress(static_cast<Kernel::ArbitrationType>(type),
address, value, nanoseconds);
return res;
}
static void Break(u8 break_reason) {
LOG_CRITICAL(Debug_Emulated, "Emulated program broke execution!");
std::string reason_str;
switch (break_reason) {
case 0: reason_str = "PANIC"; break;
case 1: reason_str = "ASSERT"; break;
case 2: reason_str = "USER"; break;
default: reason_str = "UNKNOWN"; break;
}
LOG_CRITICAL(Debug_Emulated, "Break reason: %s", reason_str.c_str());
}
/// Used to output a message on a debug hardware unit - does nothing on a retail unit
static void OutputDebugString(const char* string) {
LOG_DEBUG(Debug_Emulated, "%s", string);
}
/// Get resource limit
static ResultCode GetResourceLimit(Handle* resource_limit, Handle process_handle) {
LOG_TRACE(Kernel_SVC, "called process=0x%08X", process_handle);
SharedPtr<Kernel::Process> process = Kernel::g_handle_table.Get<Kernel::Process>(process_handle);
if (process == nullptr)
return ERR_INVALID_HANDLE;
CASCADE_RESULT(*resource_limit, Kernel::g_handle_table.Create(process->resource_limit));
return RESULT_SUCCESS;
}
/// Get resource limit current values
static ResultCode GetResourceLimitCurrentValues(s64* values, Handle resource_limit_handle, u32* names,
u32 name_count) {
LOG_TRACE(Kernel_SVC, "called resource_limit=%08X, names=%p, name_count=%d",
resource_limit_handle, names, name_count);
SharedPtr<Kernel::ResourceLimit> resource_limit = Kernel::g_handle_table.Get<Kernel::ResourceLimit>(resource_limit_handle);
if (resource_limit == nullptr)
return ERR_INVALID_HANDLE;
for (unsigned int i = 0; i < name_count; ++i)
values[i] = resource_limit->GetCurrentResourceValue(names[i]);
return RESULT_SUCCESS;
}
/// Get resource limit max values
static ResultCode GetResourceLimitLimitValues(s64* values, Handle resource_limit_handle, u32* names,
u32 name_count) {
LOG_TRACE(Kernel_SVC, "called resource_limit=%08X, names=%p, name_count=%d",
resource_limit_handle, names, name_count);
SharedPtr<Kernel::ResourceLimit> resource_limit = Kernel::g_handle_table.Get<Kernel::ResourceLimit>(resource_limit_handle);
if (resource_limit == nullptr)
return ERR_INVALID_HANDLE;
for (unsigned int i = 0; i < name_count; ++i)
values[i] = resource_limit->GetMaxResourceValue(names[i]);
return RESULT_SUCCESS;
}
/// Creates a new thread
static ResultCode CreateThread(Handle* out_handle, s32 priority, u32 entry_point, u32 arg, u32 stack_top, s32 processor_id) {
using Kernel::Thread;
std::string name;
if (Symbols::HasSymbol(entry_point)) {
TSymbol symbol = Symbols::GetSymbol(entry_point);
name = symbol.name;
} else {
name = Common::StringFromFormat("unknown-%08x", entry_point);
}
// TODO(bunnei): Implement resource limits to return an error code instead of the below assert.
// The error code should be: Description::NotAuthorized, Module::OS, Summary::WrongArgument,
// Level::Permanent
ASSERT_MSG(priority >= THREADPRIO_USERLAND_MAX, "Unexpected thread priority!");
if (priority > THREADPRIO_LOWEST) {
return ResultCode(ErrorDescription::OutOfRange, ErrorModule::OS,
ErrorSummary::InvalidArgument, ErrorLevel::Usage);
}
switch (processor_id) {
case THREADPROCESSORID_ALL:
case THREADPROCESSORID_DEFAULT:
case THREADPROCESSORID_0:
case THREADPROCESSORID_1:
break;
default:
// TODO(bunnei): Implement support for other processor IDs
ASSERT_MSG(false, "Unsupported thread processor ID: %d", processor_id);
break;
}
if (processor_id == THREADPROCESSORID_1 || processor_id == THREADPROCESSORID_ALL ||
(processor_id == THREADPROCESSORID_DEFAULT && Kernel::g_current_process->ideal_processor == THREADPROCESSORID_1)) {
LOG_WARNING(Kernel_SVC, "Newly created thread is allowed to be run in the SysCore, unimplemented.");
}
CASCADE_RESULT(SharedPtr<Thread> thread, Kernel::Thread::Create(
name, entry_point, priority, arg, processor_id, stack_top));
CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(std::move(thread)));
LOG_TRACE(Kernel_SVC, "called entrypoint=0x%08X (%s), arg=0x%08X, stacktop=0x%08X, "
"threadpriority=0x%08X, processorid=0x%08X : created handle=0x%08X", entry_point,
name.c_str(), arg, stack_top, priority, processor_id, *out_handle);
return RESULT_SUCCESS;
}
/// Called when a thread exits
static void ExitThread() {
LOG_TRACE(Kernel_SVC, "called, pc=0x%08X", Core::g_app_core->GetPC());
Kernel::GetCurrentThread()->Stop();
}
/// Gets the priority for the specified thread
static ResultCode GetThreadPriority(s32* priority, Handle handle) {
const SharedPtr<Kernel::Thread> thread = Kernel::g_handle_table.Get<Kernel::Thread>(handle);
if (thread == nullptr)
return ERR_INVALID_HANDLE;
*priority = thread->GetPriority();
return RESULT_SUCCESS;
}
/// Sets the priority for the specified thread
static ResultCode SetThreadPriority(Handle handle, s32 priority) {
SharedPtr<Kernel::Thread> thread = Kernel::g_handle_table.Get<Kernel::Thread>(handle);
if (thread == nullptr)
return ERR_INVALID_HANDLE;
thread->SetPriority(priority);
return RESULT_SUCCESS;
}
/// Create a mutex
static ResultCode CreateMutex(Handle* out_handle, u32 initial_locked) {
using Kernel::Mutex;
SharedPtr<Mutex> mutex = Mutex::Create(initial_locked != 0);
CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(std::move(mutex)));
LOG_TRACE(Kernel_SVC, "called initial_locked=%s : created handle=0x%08X",
initial_locked ? "true" : "false", *out_handle);
return RESULT_SUCCESS;
}
/// Release a mutex
static ResultCode ReleaseMutex(Handle handle) {
using Kernel::Mutex;
LOG_TRACE(Kernel_SVC, "called handle=0x%08X", handle);
SharedPtr<Mutex> mutex = Kernel::g_handle_table.Get<Mutex>(handle);
if (mutex == nullptr)
return ERR_INVALID_HANDLE;
mutex->Release();
return RESULT_SUCCESS;
}
/// Get the ID of the specified process
static ResultCode GetProcessId(u32* process_id, Handle process_handle) {
LOG_TRACE(Kernel_SVC, "called process=0x%08X", process_handle);
const SharedPtr<Kernel::Process> process = Kernel::g_handle_table.Get<Kernel::Process>(process_handle);
if (process == nullptr)
return ERR_INVALID_HANDLE;
*process_id = process->process_id;
return RESULT_SUCCESS;
}
/// Get the ID of the process that owns the specified thread
static ResultCode GetProcessIdOfThread(u32* process_id, Handle thread_handle) {
LOG_TRACE(Kernel_SVC, "called thread=0x%08X", thread_handle);
const SharedPtr<Kernel::Thread> thread = Kernel::g_handle_table.Get<Kernel::Thread>(thread_handle);
if (thread == nullptr)
return ERR_INVALID_HANDLE;
const SharedPtr<Kernel::Process> process = thread->owner_process;
ASSERT_MSG(process != nullptr, "Invalid parent process for thread=0x%08X", thread_handle);
*process_id = process->process_id;
return RESULT_SUCCESS;
}
/// Get the ID for the specified thread.
static ResultCode GetThreadId(u32* thread_id, Handle handle) {
LOG_TRACE(Kernel_SVC, "called thread=0x%08X", handle);
const SharedPtr<Kernel::Thread> thread = Kernel::g_handle_table.Get<Kernel::Thread>(handle);
if (thread == nullptr)
return ERR_INVALID_HANDLE;
*thread_id = thread->GetThreadId();
return RESULT_SUCCESS;
}
/// Creates a semaphore
static ResultCode CreateSemaphore(Handle* out_handle, s32 initial_count, s32 max_count) {
using Kernel::Semaphore;
CASCADE_RESULT(SharedPtr<Semaphore> semaphore, Semaphore::Create(initial_count, max_count));
CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(std::move(semaphore)));
LOG_TRACE(Kernel_SVC, "called initial_count=%d, max_count=%d, created handle=0x%08X",
initial_count, max_count, *out_handle);
return RESULT_SUCCESS;
}
/// Releases a certain number of slots in a semaphore
static ResultCode ReleaseSemaphore(s32* count, Handle handle, s32 release_count) {
using Kernel::Semaphore;
LOG_TRACE(Kernel_SVC, "called release_count=%d, handle=0x%08X", release_count, handle);
SharedPtr<Semaphore> semaphore = Kernel::g_handle_table.Get<Semaphore>(handle);
if (semaphore == nullptr)
return ERR_INVALID_HANDLE;
CASCADE_RESULT(*count, semaphore->Release(release_count));
return RESULT_SUCCESS;
}
/// Query process memory
static ResultCode QueryProcessMemory(MemoryInfo* memory_info, PageInfo* page_info, Handle process_handle, u32 addr) {
using Kernel::Process;
Kernel::SharedPtr<Process> process = Kernel::g_handle_table.Get<Process>(process_handle);
if (process == nullptr)
return ERR_INVALID_HANDLE;
auto vma = process->vm_manager.FindVMA(addr);
if (vma == Kernel::g_current_process->vm_manager.vma_map.end())
return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::OS, ErrorSummary::InvalidArgument, ErrorLevel::Usage);
memory_info->base_address = vma->second.base;
memory_info->permission = static_cast<u32>(vma->second.permissions);
memory_info->size = vma->second.size;
memory_info->state = static_cast<u32>(vma->second.meminfo_state);
page_info->flags = 0;
LOG_TRACE(Kernel_SVC, "called process=0x%08X addr=0x%08X", process_handle, addr);
return RESULT_SUCCESS;
}
/// Query memory
static ResultCode QueryMemory(MemoryInfo* memory_info, PageInfo* page_info, u32 addr) {
return QueryProcessMemory(memory_info, page_info, Kernel::CurrentProcess, addr);
}
/// Create an event
static ResultCode CreateEvent(Handle* out_handle, u32 reset_type) {
using Kernel::Event;
SharedPtr<Event> evt = Event::Create(static_cast<Kernel::ResetType>(reset_type));
CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(std::move(evt)));
LOG_TRACE(Kernel_SVC, "called reset_type=0x%08X : created handle=0x%08X",
reset_type, *out_handle);
return RESULT_SUCCESS;
}
/// Duplicates a kernel handle
static ResultCode DuplicateHandle(Handle* out, Handle handle) {
CASCADE_RESULT(*out, Kernel::g_handle_table.Duplicate(handle));
LOG_TRACE(Kernel_SVC, "duplicated 0x%08X to 0x%08X", handle, *out);
return RESULT_SUCCESS;
}
/// Signals an event
static ResultCode SignalEvent(Handle handle) {
using Kernel::Event;
LOG_TRACE(Kernel_SVC, "called event=0x%08X", handle);
SharedPtr<Event> evt = Kernel::g_handle_table.Get<Kernel::Event>(handle);
if (evt == nullptr)
return ERR_INVALID_HANDLE;
evt->Signal();
return RESULT_SUCCESS;
}
/// Clears an event
static ResultCode ClearEvent(Handle handle) {
using Kernel::Event;
LOG_TRACE(Kernel_SVC, "called event=0x%08X", handle);
SharedPtr<Event> evt = Kernel::g_handle_table.Get<Kernel::Event>(handle);
if (evt == nullptr)
return ERR_INVALID_HANDLE;
evt->Clear();
return RESULT_SUCCESS;
}
/// Creates a timer
static ResultCode CreateTimer(Handle* out_handle, u32 reset_type) {
using Kernel::Timer;
SharedPtr<Timer> timer = Timer::Create(static_cast<Kernel::ResetType>(reset_type));
CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(std::move(timer)));
LOG_TRACE(Kernel_SVC, "called reset_type=0x%08X : created handle=0x%08X",
reset_type, *out_handle);
return RESULT_SUCCESS;
}
/// Clears a timer
static ResultCode ClearTimer(Handle handle) {
using Kernel::Timer;
LOG_TRACE(Kernel_SVC, "called timer=0x%08X", handle);
SharedPtr<Timer> timer = Kernel::g_handle_table.Get<Timer>(handle);
if (timer == nullptr)
return ERR_INVALID_HANDLE;
timer->Clear();
return RESULT_SUCCESS;
}
/// Starts a timer
static ResultCode SetTimer(Handle handle, s64 initial, s64 interval) {
using Kernel::Timer;
LOG_TRACE(Kernel_SVC, "called timer=0x%08X", handle);
SharedPtr<Timer> timer = Kernel::g_handle_table.Get<Timer>(handle);
if (timer == nullptr)
return ERR_INVALID_HANDLE;
timer->Set(initial, interval);
return RESULT_SUCCESS;
}
/// Cancels a timer
static ResultCode CancelTimer(Handle handle) {
using Kernel::Timer;
LOG_TRACE(Kernel_SVC, "called timer=0x%08X", handle);
SharedPtr<Timer> timer = Kernel::g_handle_table.Get<Timer>(handle);
if (timer == nullptr)
return ERR_INVALID_HANDLE;
timer->Cancel();
return RESULT_SUCCESS;
}
/// Sleep the current thread
static void SleepThread(s64 nanoseconds) {
LOG_TRACE(Kernel_SVC, "called nanoseconds=%lld", nanoseconds);
// Sleep current thread and check for next thread to schedule
Kernel::WaitCurrentThread_Sleep();
// Create an event to wake the thread up after the specified nanosecond delay has passed
Kernel::GetCurrentThread()->WakeAfterDelay(nanoseconds);
}
/// This returns the total CPU ticks elapsed since the CPU was powered-on
static s64 GetSystemTick() {
s64 result = CoreTiming::GetTicks();
// Advance time to defeat dumb games (like Cubic Ninja) that busy-wait for the frame to end.
Core::g_app_core->AddTicks(150); // Measured time between two calls on a 9.2 o3DS with Ninjhax 1.1b
return result;
}
/// Creates a memory block at the specified address with the specified permissions and size
static ResultCode CreateMemoryBlock(Handle* out_handle, u32 addr, u32 size, u32 my_permission,
u32 other_permission) {
using Kernel::SharedMemory;
if (size % Memory::PAGE_SIZE != 0)
return ResultCode(ErrorDescription::MisalignedSize, ErrorModule::OS, ErrorSummary::InvalidArgument, ErrorLevel::Usage);
// TODO(Subv): Return E0A01BF5 if the address is not in the application's heap
// TODO(Subv): Implement this function properly
using Kernel::MemoryPermission;
SharedPtr<SharedMemory> shared_memory = SharedMemory::Create(size,
(MemoryPermission)my_permission, (MemoryPermission)other_permission);
// Map the SharedMemory to the specified address
shared_memory->base_address = addr;
CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(std::move(shared_memory)));
LOG_WARNING(Kernel_SVC, "(STUBBED) called addr=0x%08X", addr);
return RESULT_SUCCESS;
}
static ResultCode GetSystemInfo(s64* out, u32 type, s32 param) {
using Kernel::MemoryRegion;
LOG_TRACE(Kernel_SVC, "called type=%u param=%d", type, param);
switch ((SystemInfoType)type) {
case SystemInfoType::REGION_MEMORY_USAGE:
switch ((SystemInfoMemUsageRegion)param) {
case SystemInfoMemUsageRegion::ALL:
*out = Kernel::GetMemoryRegion(Kernel::MemoryRegion::APPLICATION)->used
+ Kernel::GetMemoryRegion(Kernel::MemoryRegion::SYSTEM)->used
+ Kernel::GetMemoryRegion(Kernel::MemoryRegion::BASE)->used;
break;
case SystemInfoMemUsageRegion::APPLICATION:
*out = Kernel::GetMemoryRegion(Kernel::MemoryRegion::APPLICATION)->used;
break;
case SystemInfoMemUsageRegion::SYSTEM:
*out = Kernel::GetMemoryRegion(Kernel::MemoryRegion::SYSTEM)->used;
break;
case SystemInfoMemUsageRegion::BASE:
*out = Kernel::GetMemoryRegion(Kernel::MemoryRegion::BASE)->used;
break;
default:
LOG_ERROR(Kernel_SVC, "unknown GetSystemInfo type=0 region: param=%d", param);
*out = 0;
break;
}
break;
case SystemInfoType::KERNEL_ALLOCATED_PAGES:
LOG_ERROR(Kernel_SVC, "unimplemented GetSystemInfo type=2 param=%d", param);
*out = 0;
break;
case SystemInfoType::KERNEL_SPAWNED_PIDS:
*out = 5;
break;
default:
LOG_ERROR(Kernel_SVC, "unknown GetSystemInfo type=%u param=%d", type, param);
*out = 0;
break;
}
// This function never returns an error, even if invalid parameters were passed.
return RESULT_SUCCESS;
}
static ResultCode GetProcessInfo(s64* out, Handle process_handle, u32 type) {
LOG_TRACE(Kernel_SVC, "called process=0x%08X type=%u", process_handle, type);
using Kernel::Process;
Kernel::SharedPtr<Process> process = Kernel::g_handle_table.Get<Process>(process_handle);
if (process == nullptr)
return ERR_INVALID_HANDLE;
switch (type) {
case 0:
case 2:
// TODO(yuriks): Type 0 returns a slightly higher number than type 2, but I'm not sure
// what's the difference between them.
*out = process->heap_used + process->linear_heap_used + process->misc_memory_used;
break;
case 1:
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
// These are valid, but not implemented yet
LOG_ERROR(Kernel_SVC, "unimplemented GetProcessInfo type=%u", type);
break;
case 20:
*out = Memory::FCRAM_PADDR - process->GetLinearHeapBase();
break;
default:
LOG_ERROR(Kernel_SVC, "unknown GetProcessInfo type=%u", type);
if (type >= 21 && type <= 23) {
return ResultCode( // 0xE0E01BF4
ErrorDescription::NotImplemented, ErrorModule::OS,
ErrorSummary::InvalidArgument, ErrorLevel::Usage);
} else {
return ResultCode( // 0xD8E007ED
ErrorDescription::InvalidEnumValue, ErrorModule::Kernel,
ErrorSummary::InvalidArgument, ErrorLevel::Permanent);
}
break;
}
return RESULT_SUCCESS;
}
namespace {
struct FunctionDef {
using Func = void();
u32 id;
Func* func;
const char* name;
};
}
static const FunctionDef SVC_Table[] = {
{0x00, nullptr, "Unknown"},
{0x01, HLE::Wrap<ControlMemory>, "ControlMemory"},
{0x02, HLE::Wrap<QueryMemory>, "QueryMemory"},
{0x03, nullptr, "ExitProcess"},
{0x04, nullptr, "GetProcessAffinityMask"},
{0x05, nullptr, "SetProcessAffinityMask"},
{0x06, nullptr, "GetProcessIdealProcessor"},
{0x07, nullptr, "SetProcessIdealProcessor"},
{0x08, HLE::Wrap<CreateThread>, "CreateThread"},
{0x09, ExitThread, "ExitThread"},
{0x0A, HLE::Wrap<SleepThread>, "SleepThread"},
{0x0B, HLE::Wrap<GetThreadPriority>, "GetThreadPriority"},
{0x0C, HLE::Wrap<SetThreadPriority>, "SetThreadPriority"},
{0x0D, nullptr, "GetThreadAffinityMask"},
{0x0E, nullptr, "SetThreadAffinityMask"},
{0x0F, nullptr, "GetThreadIdealProcessor"},
{0x10, nullptr, "SetThreadIdealProcessor"},
{0x11, nullptr, "GetCurrentProcessorNumber"},
{0x12, nullptr, "Run"},
{0x13, HLE::Wrap<CreateMutex>, "CreateMutex"},
{0x14, HLE::Wrap<ReleaseMutex>, "ReleaseMutex"},
{0x15, HLE::Wrap<CreateSemaphore>, "CreateSemaphore"},
{0x16, HLE::Wrap<ReleaseSemaphore>, "ReleaseSemaphore"},
{0x17, HLE::Wrap<CreateEvent>, "CreateEvent"},
{0x18, HLE::Wrap<SignalEvent>, "SignalEvent"},
{0x19, HLE::Wrap<ClearEvent>, "ClearEvent"},
{0x1A, HLE::Wrap<CreateTimer>, "CreateTimer"},
{0x1B, HLE::Wrap<SetTimer>, "SetTimer"},
{0x1C, HLE::Wrap<CancelTimer>, "CancelTimer"},
{0x1D, HLE::Wrap<ClearTimer>, "ClearTimer"},
{0x1E, HLE::Wrap<CreateMemoryBlock>, "CreateMemoryBlock"},
{0x1F, HLE::Wrap<MapMemoryBlock>, "MapMemoryBlock"},
{0x20, HLE::Wrap<UnmapMemoryBlock>, "UnmapMemoryBlock"},
{0x21, HLE::Wrap<CreateAddressArbiter>, "CreateAddressArbiter"},
{0x22, HLE::Wrap<ArbitrateAddress>, "ArbitrateAddress"},
{0x23, HLE::Wrap<CloseHandle>, "CloseHandle"},
{0x24, HLE::Wrap<WaitSynchronization1>, "WaitSynchronization1"},
{0x25, HLE::Wrap<WaitSynchronizationN>, "WaitSynchronizationN"},
{0x26, nullptr, "SignalAndWait"},
{0x27, HLE::Wrap<DuplicateHandle>, "DuplicateHandle"},
{0x28, HLE::Wrap<GetSystemTick>, "GetSystemTick"},
{0x29, nullptr, "GetHandleInfo"},
{0x2A, HLE::Wrap<GetSystemInfo>, "GetSystemInfo"},
{0x2B, HLE::Wrap<GetProcessInfo>, "GetProcessInfo"},
{0x2C, nullptr, "GetThreadInfo"},
{0x2D, HLE::Wrap<ConnectToPort>, "ConnectToPort"},
{0x2E, nullptr, "SendSyncRequest1"},
{0x2F, nullptr, "SendSyncRequest2"},
{0x30, nullptr, "SendSyncRequest3"},
{0x31, nullptr, "SendSyncRequest4"},
{0x32, HLE::Wrap<SendSyncRequest>, "SendSyncRequest"},
{0x33, nullptr, "OpenProcess"},
{0x34, nullptr, "OpenThread"},
{0x35, HLE::Wrap<GetProcessId>, "GetProcessId"},
{0x36, HLE::Wrap<GetProcessIdOfThread>, "GetProcessIdOfThread"},
{0x37, HLE::Wrap<GetThreadId>, "GetThreadId"},
{0x38, HLE::Wrap<GetResourceLimit>, "GetResourceLimit"},
{0x39, HLE::Wrap<GetResourceLimitLimitValues>, "GetResourceLimitLimitValues"},
{0x3A, HLE::Wrap<GetResourceLimitCurrentValues>, "GetResourceLimitCurrentValues"},
{0x3B, nullptr, "GetThreadContext"},
{0x3C, HLE::Wrap<Break>, "Break"},
{0x3D, HLE::Wrap<OutputDebugString>, "OutputDebugString"},
{0x3E, nullptr, "ControlPerformanceCounter"},
{0x3F, nullptr, "Unknown"},
{0x40, nullptr, "Unknown"},
{0x41, nullptr, "Unknown"},
{0x42, nullptr, "Unknown"},
{0x43, nullptr, "Unknown"},
{0x44, nullptr, "Unknown"},
{0x45, nullptr, "Unknown"},
{0x46, nullptr, "Unknown"},
{0x47, nullptr, "CreatePort"},
{0x48, nullptr, "CreateSessionToPort"},
{0x49, nullptr, "CreateSession"},
{0x4A, nullptr, "AcceptSession"},
{0x4B, nullptr, "ReplyAndReceive1"},
{0x4C, nullptr, "ReplyAndReceive2"},
{0x4D, nullptr, "ReplyAndReceive3"},
{0x4E, nullptr, "ReplyAndReceive4"},
{0x4F, nullptr, "ReplyAndReceive"},
{0x50, nullptr, "BindInterrupt"},
{0x51, nullptr, "UnbindInterrupt"},
{0x52, nullptr, "InvalidateProcessDataCache"},
{0x53, nullptr, "StoreProcessDataCache"},
{0x54, nullptr, "FlushProcessDataCache"},
{0x55, nullptr, "StartInterProcessDma"},
{0x56, nullptr, "StopDma"},
{0x57, nullptr, "GetDmaState"},
{0x58, nullptr, "RestartDma"},
{0x59, nullptr, "Unknown"},
{0x5A, nullptr, "Unknown"},
{0x5B, nullptr, "Unknown"},
{0x5C, nullptr, "Unknown"},
{0x5D, nullptr, "Unknown"},
{0x5E, nullptr, "Unknown"},
{0x5F, nullptr, "Unknown"},
{0x60, nullptr, "DebugActiveProcess"},
{0x61, nullptr, "BreakDebugProcess"},
{0x62, nullptr, "TerminateDebugProcess"},
{0x63, nullptr, "GetProcessDebugEvent"},
{0x64, nullptr, "ContinueDebugEvent"},
{0x65, nullptr, "GetProcessList"},
{0x66, nullptr, "GetThreadList"},
{0x67, nullptr, "GetDebugThreadContext"},
{0x68, nullptr, "SetDebugThreadContext"},
{0x69, nullptr, "QueryDebugProcessMemory"},
{0x6A, nullptr, "ReadProcessMemory"},
{0x6B, nullptr, "WriteProcessMemory"},
{0x6C, nullptr, "SetHardwareBreakPoint"},
{0x6D, nullptr, "GetDebugThreadParam"},
{0x6E, nullptr, "Unknown"},
{0x6F, nullptr, "Unknown"},
{0x70, nullptr, "ControlProcessMemory"},
{0x71, nullptr, "MapProcessMemory"},
{0x72, nullptr, "UnmapProcessMemory"},
{0x73, nullptr, "CreateCodeSet"},
{0x74, nullptr, "RandomStub"},
{0x75, nullptr, "CreateProcess"},
{0x76, nullptr, "TerminateProcess"},
{0x77, nullptr, "SetProcessResourceLimits"},
{0x78, nullptr, "CreateResourceLimit"},
{0x79, nullptr, "SetResourceLimitValues"},
{0x7A, nullptr, "AddCodeSegment"},
{0x7B, nullptr, "Backdoor"},
{0x7C, nullptr, "KernelSetState"},
{0x7D, HLE::Wrap<QueryProcessMemory>, "QueryProcessMemory"},
};
Common::Profiling::TimingCategory profiler_svc("SVC Calls");
static const FunctionDef* GetSVCInfo(u32 func_num) {
if (func_num >= ARRAY_SIZE(SVC_Table)) {
LOG_ERROR(Kernel_SVC, "unknown svc=0x%02X", func_num);
return nullptr;
}
return &SVC_Table[func_num];
}
MICROPROFILE_DEFINE(Kernel_SVC, "Kernel", "SVC", MP_RGB(70, 200, 70));
void CallSVC(u32 immediate) {
Common::Profiling::ScopeTimer timer_svc(profiler_svc);
MICROPROFILE_SCOPE(Kernel_SVC);
const FunctionDef* info = GetSVCInfo(immediate);
if (info) {
if (info->func) {
info->func();
} else {
LOG_ERROR(Kernel_SVC, "unimplemented SVC function %s(..)", info->name);
}
}
}
} // namespace