citra/src/core/loader/elf.cpp
Tobias 623b0621ab
Port various minor changes from yuzu PRs (#4725)
* common/thread: Remove unused functions

Many of these functions are carried over from Dolphin (where they aren't
used anymore). Given these have no use (and we really shouldn't be
screwing around with OS-specific thread scheduler handling from the
emulator, these can be removed.

The function for setting the thread name is left, however, since it can
have debugging utility usages.

* input_common/sdl: Use a type alias to shorten declaration of GetPollers

Just makes the definitions a little bit more tidy.

* input_common/sdl: Correct return values within implementations of GetPollers()

In both cases, we weren't actually returning anything, which is
undefined behavior.

* yuzu/debugger/graphics_surface: Fill in missing surface format listings

Fills in the missing surface types that were marked as unknown. The
order corresponds with the TextureFormat enum within
video_core/texture.h.

We also don't need to all of these strings as translatable (only the
first string, as it's an English word).

* yuzu/debugger/graphics_surface: Clean up connection overload deduction

We can utilize qOverload with the signal connections to make the
function deducing a little less ugly.

* yuzu/debugger/graphics_surface: Tidy up SaveSurface

- Use QStringLiteral where applicable.

- Use const where applicable

- Remove unnecessary precondition check (we already assert the pixbuf
  being non null)

* yuzu/debugger/graphics_surface: Display error messages for file I/O errors

* core: Add missing override specifiers where applicable

Applies the override specifier where applicable. In the case of
destructors that are  defaulted in their definition, they can
simply be removed.

This also removes the unnecessary inclusions being done in audin_u and
audrec_u, given their close proximity.

* kernel/thread: Make parameter of GetWaitObjectIndex() const qualified

The pointed to member is never actually modified, so it can be made
const.

* kernel/thread: Avoid sign conversion within GetCommandBufferAddress()

Previously this was performing a u64 + int sign conversion. When dealing
with addresses, we should generally be keeping the arithmetic in the
same signedness type.

This also gets rid of the static lifetime of the constant, as there's no
need to make a trivial type like this potentially live for the entire
duration of the program.

* kernel/codeset: Make CodeSet's memory data member a regular std::vector

The use of a shared_ptr is an implementation detail of the VMManager
itself when mapping memory. Because of that, we shouldn't require all
users of the CodeSet to have to allocate the shared_ptr ahead of time.
It's intended that CodeSet simply pass in the required direct data, and
that the memory manager takes care of it from that point on.

This means we just do the shared pointer allocation in a single place,
when loading modules, as opposed to in each loader.

* kernel/wait_object: Make ShouldWait() take thread members by pointer-to-const

Given this is intended as a querying function, it doesn't make sense to
allow the implementer to modify the state of the given thread.
2019-05-01 14:28:49 +02:00

413 lines
11 KiB
C++

// Copyright 2013 Dolphin Emulator Project / 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cstring>
#include <memory>
#include <string>
#include "common/common_types.h"
#include "common/file_util.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/loader/elf.h"
#include "core/memory.h"
using Kernel::CodeSet;
////////////////////////////////////////////////////////////////////////////////////////////////////
// ELF Header Constants
// File type
enum ElfType {
ET_NONE = 0,
ET_REL = 1,
ET_EXEC = 2,
ET_DYN = 3,
ET_CORE = 4,
ET_LOPROC = 0xFF00,
ET_HIPROC = 0xFFFF,
};
// Machine/Architecture
enum ElfMachine {
EM_NONE = 0,
EM_M32 = 1,
EM_SPARC = 2,
EM_386 = 3,
EM_68K = 4,
EM_88K = 5,
EM_860 = 7,
EM_MIPS = 8
};
// File version
#define EV_NONE 0
#define EV_CURRENT 1
// Identification index
#define EI_MAG0 0
#define EI_MAG1 1
#define EI_MAG2 2
#define EI_MAG3 3
#define EI_CLASS 4
#define EI_DATA 5
#define EI_VERSION 6
#define EI_PAD 7
#define EI_NIDENT 16
// Sections constants
// Section types
#define SHT_NULL 0
#define SHT_PROGBITS 1
#define SHT_SYMTAB 2
#define SHT_STRTAB 3
#define SHT_RELA 4
#define SHT_HASH 5
#define SHT_DYNAMIC 6
#define SHT_NOTE 7
#define SHT_NOBITS 8
#define SHT_REL 9
#define SHT_SHLIB 10
#define SHT_DYNSYM 11
#define SHT_LOPROC 0x70000000
#define SHT_HIPROC 0x7FFFFFFF
#define SHT_LOUSER 0x80000000
#define SHT_HIUSER 0xFFFFFFFF
// Section flags
enum ElfSectionFlags {
SHF_WRITE = 0x1,
SHF_ALLOC = 0x2,
SHF_EXECINSTR = 0x4,
SHF_MASKPROC = 0xF0000000,
};
// Segment types
#define PT_NULL 0
#define PT_LOAD 1
#define PT_DYNAMIC 2
#define PT_INTERP 3
#define PT_NOTE 4
#define PT_SHLIB 5
#define PT_PHDR 6
#define PT_LOPROC 0x70000000
#define PT_HIPROC 0x7FFFFFFF
// Segment flags
#define PF_X 0x1
#define PF_W 0x2
#define PF_R 0x4
#define PF_MASKPROC 0xF0000000
typedef unsigned int Elf32_Addr;
typedef unsigned short Elf32_Half;
typedef unsigned int Elf32_Off;
typedef signed int Elf32_Sword;
typedef unsigned int Elf32_Word;
////////////////////////////////////////////////////////////////////////////////////////////////////
// ELF file header
struct Elf32_Ehdr {
unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type;
Elf32_Half e_machine;
Elf32_Word e_version;
Elf32_Addr e_entry;
Elf32_Off e_phoff;
Elf32_Off e_shoff;
Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shstrndx;
};
// Section header
struct Elf32_Shdr {
Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
Elf32_Word sh_size;
Elf32_Word sh_link;
Elf32_Word sh_info;
Elf32_Word sh_addralign;
Elf32_Word sh_entsize;
};
// Segment header
struct Elf32_Phdr {
Elf32_Word p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
Elf32_Word p_filesz;
Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;
};
// Symbol table entry
struct Elf32_Sym {
Elf32_Word st_name;
Elf32_Addr st_value;
Elf32_Word st_size;
unsigned char st_info;
unsigned char st_other;
Elf32_Half st_shndx;
};
// Relocation entries
struct Elf32_Rel {
Elf32_Addr r_offset;
Elf32_Word r_info;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// ElfReader class
typedef int SectionID;
class ElfReader {
private:
char* base;
u32* base32;
Elf32_Ehdr* header;
Elf32_Phdr* segments;
Elf32_Shdr* sections;
u32* sectionAddrs;
bool relocate;
u32 entryPoint;
public:
explicit ElfReader(void* ptr);
u32 Read32(int off) const {
return base32[off >> 2];
}
// Quick accessors
ElfType GetType() const {
return (ElfType)(header->e_type);
}
ElfMachine GetMachine() const {
return (ElfMachine)(header->e_machine);
}
u32 GetEntryPoint() const {
return entryPoint;
}
u32 GetFlags() const {
return (u32)(header->e_flags);
}
std::shared_ptr<CodeSet> LoadInto(u32 vaddr);
int GetNumSegments() const {
return (int)(header->e_phnum);
}
int GetNumSections() const {
return (int)(header->e_shnum);
}
const u8* GetPtr(int offset) const {
return (u8*)base + offset;
}
const char* GetSectionName(int section) const;
const u8* GetSectionDataPtr(int section) const {
if (section < 0 || section >= header->e_shnum)
return nullptr;
if (sections[section].sh_type != SHT_NOBITS)
return GetPtr(sections[section].sh_offset);
else
return nullptr;
}
bool IsCodeSection(int section) const {
return sections[section].sh_type == SHT_PROGBITS;
}
const u8* GetSegmentPtr(int segment) {
return GetPtr(segments[segment].p_offset);
}
u32 GetSectionAddr(SectionID section) const {
return sectionAddrs[section];
}
unsigned int GetSectionSize(SectionID section) const {
return sections[section].sh_size;
}
SectionID GetSectionByName(const char* name, int firstSection = 0) const; //-1 for not found
bool DidRelocate() const {
return relocate;
}
};
ElfReader::ElfReader(void* ptr) {
base = (char*)ptr;
base32 = (u32*)ptr;
header = (Elf32_Ehdr*)ptr;
segments = (Elf32_Phdr*)(base + header->e_phoff);
sections = (Elf32_Shdr*)(base + header->e_shoff);
entryPoint = header->e_entry;
}
const char* ElfReader::GetSectionName(int section) const {
if (sections[section].sh_type == SHT_NULL)
return nullptr;
int name_offset = sections[section].sh_name;
const char* ptr = reinterpret_cast<const char*>(GetSectionDataPtr(header->e_shstrndx));
if (ptr)
return ptr + name_offset;
return nullptr;
}
std::shared_ptr<CodeSet> ElfReader::LoadInto(u32 vaddr) {
LOG_DEBUG(Loader, "String section: {}", header->e_shstrndx);
// Should we relocate?
relocate = (header->e_type != ET_EXEC);
if (relocate) {
LOG_DEBUG(Loader, "Relocatable module");
entryPoint += vaddr;
} else {
LOG_DEBUG(Loader, "Prerelocated executable");
}
LOG_DEBUG(Loader, "{} segments:", header->e_phnum);
// First pass : Get the bits into RAM
u32 base_addr = relocate ? vaddr : 0;
u32 total_image_size = 0;
for (unsigned int i = 0; i < header->e_phnum; ++i) {
Elf32_Phdr* p = &segments[i];
if (p->p_type == PT_LOAD) {
total_image_size += (p->p_memsz + 0xFFF) & ~0xFFF;
}
}
std::vector<u8> program_image(total_image_size);
std::size_t current_image_position = 0;
std::shared_ptr<CodeSet> codeset = Core::System::GetInstance().Kernel().CreateCodeSet("", 0);
for (unsigned int i = 0; i < header->e_phnum; ++i) {
Elf32_Phdr* p = &segments[i];
LOG_DEBUG(Loader, "Type: {} Vaddr: {:08X} Filesz: {:08X} Memsz: {:08X} ", p->p_type,
p->p_vaddr, p->p_filesz, p->p_memsz);
if (p->p_type == PT_LOAD) {
CodeSet::Segment* codeset_segment;
u32 permission_flags = p->p_flags & (PF_R | PF_W | PF_X);
if (permission_flags == (PF_R | PF_X)) {
codeset_segment = &codeset->CodeSegment();
} else if (permission_flags == (PF_R)) {
codeset_segment = &codeset->RODataSegment();
} else if (permission_flags == (PF_R | PF_W)) {
codeset_segment = &codeset->DataSegment();
} else {
LOG_ERROR(Loader, "Unexpected ELF PT_LOAD segment id {} with flags {:X}", i,
p->p_flags);
continue;
}
if (codeset_segment->size != 0) {
LOG_ERROR(Loader,
"ELF has more than one segment of the same type. Skipping extra "
"segment (id {})",
i);
continue;
}
u32 segment_addr = base_addr + p->p_vaddr;
u32 aligned_size = (p->p_memsz + 0xFFF) & ~0xFFF;
codeset_segment->offset = current_image_position;
codeset_segment->addr = segment_addr;
codeset_segment->size = aligned_size;
memcpy(&program_image[current_image_position], GetSegmentPtr(i), p->p_filesz);
current_image_position += aligned_size;
}
}
codeset->entrypoint = base_addr + header->e_entry;
codeset->memory = std::move(program_image);
LOG_DEBUG(Loader, "Done loading.");
return codeset;
}
SectionID ElfReader::GetSectionByName(const char* name, int firstSection) const {
for (int i = firstSection; i < header->e_shnum; i++) {
const char* secname = GetSectionName(i);
if (secname != nullptr && strcmp(name, secname) == 0)
return i;
}
return -1;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Loader namespace
namespace Loader {
FileType AppLoader_ELF::IdentifyType(FileUtil::IOFile& file) {
u32 magic;
file.Seek(0, SEEK_SET);
if (1 != file.ReadArray<u32>(&magic, 1))
return FileType::Error;
if (MakeMagic('\x7f', 'E', 'L', 'F') == magic)
return FileType::ELF;
return FileType::Error;
}
ResultStatus AppLoader_ELF::Load(std::shared_ptr<Kernel::Process>& process) {
if (is_loaded)
return ResultStatus::ErrorAlreadyLoaded;
if (!file.IsOpen())
return ResultStatus::Error;
// Reset read pointer in case this file has been read before.
file.Seek(0, SEEK_SET);
std::size_t size = file.GetSize();
std::unique_ptr<u8[]> buffer(new u8[size]);
if (file.ReadBytes(&buffer[0], size) != size)
return ResultStatus::Error;
ElfReader elf_reader(&buffer[0]);
std::shared_ptr<CodeSet> codeset = elf_reader.LoadInto(Memory::PROCESS_IMAGE_VADDR);
codeset->name = filename;
process = Core::System::GetInstance().Kernel().CreateProcess(std::move(codeset));
process->svc_access_mask.set();
process->address_mappings = default_address_mappings;
// Attach the default resource limit (APPLICATION) to the process
process->resource_limit = Core::System::GetInstance().Kernel().ResourceLimit().GetForCategory(
Kernel::ResourceLimitCategory::APPLICATION);
process->Run(48, Kernel::DEFAULT_STACK_SIZE);
is_loaded = true;
return ResultStatus::Success;
}
} // namespace Loader