citra/src/video_core/rasterizer.cpp
archshift ef24e72b26 Asserts: break/crash program, fit to style guide; log.h->assert.h
Involves making asserts use printf instead of the log functions (log functions are asynchronous and, as such, the log won't be printed in time)
As such, the log type argument was removed (printf obviously can't use it, and it's made obsolete by the file and line printing)

Also removed some GEKKO cruft.
2015-02-10 18:30:31 -08:00

697 lines
30 KiB
C++

// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include "common/common_types.h"
#include "math.h"
#include "pica.h"
#include "rasterizer.h"
#include "vertex_shader.h"
#include "debug_utils/debug_utils.h"
namespace Pica {
namespace Rasterizer {
static void DrawPixel(int x, int y, const Math::Vec4<u8>& color) {
const PAddr addr = registers.framebuffer.GetColorBufferPhysicalAddress();
u32* color_buffer = reinterpret_cast<u32*>(Memory::GetPointer(PAddrToVAddr(addr)));
u32 value = (color.a() << 24) | (color.r() << 16) | (color.g() << 8) | color.b();
// Assuming RGBA8 format until actual framebuffer format handling is implemented
*(color_buffer + x + y * registers.framebuffer.GetWidth()) = value;
}
static const Math::Vec4<u8> GetPixel(int x, int y) {
const PAddr addr = registers.framebuffer.GetColorBufferPhysicalAddress();
u32* color_buffer_u32 = reinterpret_cast<u32*>(Memory::GetPointer(PAddrToVAddr(addr)));
u32 value = *(color_buffer_u32 + x + y * registers.framebuffer.GetWidth());
Math::Vec4<u8> ret;
ret.a() = value >> 24;
ret.r() = (value >> 16) & 0xFF;
ret.g() = (value >> 8) & 0xFF;
ret.b() = value & 0xFF;
return ret;
}
static u32 GetDepth(int x, int y) {
const PAddr addr = registers.framebuffer.GetDepthBufferPhysicalAddress();
u16* depth_buffer = reinterpret_cast<u16*>(Memory::GetPointer(PAddrToVAddr(addr)));
// Assuming 16-bit depth buffer format until actual format handling is implemented
return *(depth_buffer + x + y * registers.framebuffer.GetWidth());
}
static void SetDepth(int x, int y, u16 value) {
const PAddr addr = registers.framebuffer.GetDepthBufferPhysicalAddress();
u16* depth_buffer = reinterpret_cast<u16*>(Memory::GetPointer(PAddrToVAddr(addr)));
// Assuming 16-bit depth buffer format until actual format handling is implemented
*(depth_buffer + x + y * registers.framebuffer.GetWidth()) = value;
}
// NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values
struct Fix12P4 {
Fix12P4() {}
Fix12P4(u16 val) : val(val) {}
static u16 FracMask() { return 0xF; }
static u16 IntMask() { return (u16)~0xF; }
operator u16() const {
return val;
}
bool operator < (const Fix12P4& oth) const {
return (u16)*this < (u16)oth;
}
private:
u16 val;
};
/**
* Calculate signed area of the triangle spanned by the three argument vertices.
* The sign denotes an orientation.
*
* @todo define orientation concretely.
*/
static int SignedArea (const Math::Vec2<Fix12P4>& vtx1,
const Math::Vec2<Fix12P4>& vtx2,
const Math::Vec2<Fix12P4>& vtx3) {
const auto vec1 = Math::MakeVec(vtx2 - vtx1, 0);
const auto vec2 = Math::MakeVec(vtx3 - vtx1, 0);
// TODO: There is a very small chance this will overflow for sizeof(int) == 4
return Math::Cross(vec1, vec2).z;
};
void ProcessTriangle(const VertexShader::OutputVertex& v0,
const VertexShader::OutputVertex& v1,
const VertexShader::OutputVertex& v2)
{
// vertex positions in rasterizer coordinates
auto FloatToFix = [](float24 flt) {
return Fix12P4(static_cast<unsigned short>(flt.ToFloat32() * 16.0f));
};
auto ScreenToRasterizerCoordinates = [FloatToFix](const Math::Vec3<float24> vec) {
return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)};
};
Math::Vec3<Fix12P4> vtxpos[3]{ ScreenToRasterizerCoordinates(v0.screenpos),
ScreenToRasterizerCoordinates(v1.screenpos),
ScreenToRasterizerCoordinates(v2.screenpos) };
if (registers.cull_mode == Regs::CullMode::KeepClockWise) {
// Reverse vertex order and use the CCW code path.
std::swap(vtxpos[1], vtxpos[2]);
}
if (registers.cull_mode != Regs::CullMode::KeepAll) {
// Cull away triangles which are wound clockwise.
// TODO: A check for degenerate triangles ("== 0") should be considered for CullMode::KeepAll
if (SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0)
return;
}
// TODO: Proper scissor rect test!
u16 min_x = std::min({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
u16 min_y = std::min({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
min_x &= Fix12P4::IntMask();
min_y &= Fix12P4::IntMask();
max_x = ((max_x + Fix12P4::FracMask()) & Fix12P4::IntMask());
max_y = ((max_y + Fix12P4::FracMask()) & Fix12P4::IntMask());
// Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not
// drawn. Pixels on any other triangle border are drawn. This is implemented with three bias
// values which are added to the barycentric coordinates w0, w1 and w2, respectively.
// NOTE: These are the PSP filling rules. Not sure if the 3DS uses the same ones...
auto IsRightSideOrFlatBottomEdge = [](const Math::Vec2<Fix12P4>& vtx,
const Math::Vec2<Fix12P4>& line1,
const Math::Vec2<Fix12P4>& line2)
{
if (line1.y == line2.y) {
// just check if vertex is above us => bottom line parallel to x-axis
return vtx.y < line1.y;
} else {
// check if vertex is on our left => right side
// TODO: Not sure how likely this is to overflow
return (int)vtx.x < (int)line1.x + ((int)line2.x - (int)line1.x) * ((int)vtx.y - (int)line1.y) / ((int)line2.y - (int)line1.y);
}
};
int bias0 = IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0;
int bias1 = IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0;
int bias2 = IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0;
auto w_inverse = Math::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w);
auto textures = registers.GetTextures();
auto tev_stages = registers.GetTevStages();
// TODO: Not sure if looping through x first might be faster
for (u16 y = min_y; y < max_y; y += 0x10) {
for (u16 x = min_x; x < max_x; x += 0x10) {
// Calculate the barycentric coordinates w0, w1 and w2
int w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y});
int w1 = bias1 + SignedArea(vtxpos[2].xy(), vtxpos[0].xy(), {x, y});
int w2 = bias2 + SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), {x, y});
int wsum = w0 + w1 + w2;
// If current pixel is not covered by the current primitive
if (w0 < 0 || w1 < 0 || w2 < 0)
continue;
auto baricentric_coordinates = Math::MakeVec(float24::FromFloat32(static_cast<float>(w0)),
float24::FromFloat32(static_cast<float>(w1)),
float24::FromFloat32(static_cast<float>(w2)));
float24 interpolated_w_inverse = float24::FromFloat32(1.0f) / Math::Dot(w_inverse, baricentric_coordinates);
// Perspective correct attribute interpolation:
// Attribute values cannot be calculated by simple linear interpolation since
// they are not linear in screen space. For example, when interpolating a
// texture coordinate across two vertices, something simple like
// u = (u0*w0 + u1*w1)/(w0+w1)
// will not work. However, the attribute value divided by the
// clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear
// in screenspace. Hence, we can linearly interpolate these two independently and
// calculate the interpolated attribute by dividing the results.
// I.e.
// u_over_w = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1)
// one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1)
// u = u_over_w / one_over_w
//
// The generalization to three vertices is straightforward in baricentric coordinates.
auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) {
auto attr_over_w = Math::MakeVec(attr0, attr1, attr2);
float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates);
return interpolated_attr_over_w * interpolated_w_inverse;
};
Math::Vec4<u8> primary_color{
(u8)(GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() * 255),
(u8)(GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() * 255),
(u8)(GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() * 255),
(u8)(GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() * 255)
};
Math::Vec2<float24> uv[3];
uv[0].u() = GetInterpolatedAttribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u());
uv[0].v() = GetInterpolatedAttribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v());
uv[1].u() = GetInterpolatedAttribute(v0.tc1.u(), v1.tc1.u(), v2.tc1.u());
uv[1].v() = GetInterpolatedAttribute(v0.tc1.v(), v1.tc1.v(), v2.tc1.v());
uv[2].u() = GetInterpolatedAttribute(v0.tc2.u(), v1.tc2.u(), v2.tc2.u());
uv[2].v() = GetInterpolatedAttribute(v0.tc2.v(), v1.tc2.v(), v2.tc2.v());
Math::Vec4<u8> texture_color[3]{};
for (int i = 0; i < 3; ++i) {
const auto& texture = textures[i];
if (!texture.enabled)
continue;
DEBUG_ASSERT(0 != texture.config.address);
int s = (int)(uv[i].u() * float24::FromFloat32(static_cast<float>(texture.config.width))).ToFloat32();
int t = (int)(uv[i].v() * float24::FromFloat32(static_cast<float>(texture.config.height))).ToFloat32();
auto GetWrappedTexCoord = [](Regs::TextureConfig::WrapMode mode, int val, unsigned size) {
switch (mode) {
case Regs::TextureConfig::ClampToEdge:
val = std::max(val, 0);
val = std::min(val, (int)size - 1);
return val;
case Regs::TextureConfig::Repeat:
return (int)(((unsigned)val) % size);
default:
LOG_ERROR(HW_GPU, "Unknown texture coordinate wrapping mode %x\n", (int)mode);
UNIMPLEMENTED();
return 0;
}
};
s = GetWrappedTexCoord(texture.config.wrap_s, s, texture.config.width);
t = texture.config.height - 1 - GetWrappedTexCoord(texture.config.wrap_t, t, texture.config.height);
u8* texture_data = Memory::GetPointer(PAddrToVAddr(texture.config.GetPhysicalAddress()));
auto info = DebugUtils::TextureInfo::FromPicaRegister(texture.config, texture.format);
texture_color[i] = DebugUtils::LookupTexture(texture_data, s, t, info);
DebugUtils::DumpTexture(texture.config, texture_data);
}
// Texture environment - consists of 6 stages of color and alpha combining.
//
// Color combiners take three input color values from some source (e.g. interpolated
// vertex color, texture color, previous stage, etc), perform some very simple
// operations on each of them (e.g. inversion) and then calculate the output color
// with some basic arithmetic. Alpha combiners can be configured separately but work
// analogously.
Math::Vec4<u8> combiner_output;
for (const auto& tev_stage : tev_stages) {
using Source = Regs::TevStageConfig::Source;
using ColorModifier = Regs::TevStageConfig::ColorModifier;
using AlphaModifier = Regs::TevStageConfig::AlphaModifier;
using Operation = Regs::TevStageConfig::Operation;
auto GetSource = [&](Source source) -> Math::Vec4<u8> {
switch (source) {
case Source::PrimaryColor:
return primary_color;
case Source::Texture0:
return texture_color[0];
case Source::Texture1:
return texture_color[1];
case Source::Texture2:
return texture_color[2];
case Source::Constant:
return {tev_stage.const_r, tev_stage.const_g, tev_stage.const_b, tev_stage.const_a};
case Source::Previous:
return combiner_output;
default:
LOG_ERROR(HW_GPU, "Unknown color combiner source %d\n", (int)source);
UNIMPLEMENTED();
return {};
}
};
static auto GetColorModifier = [](ColorModifier factor, const Math::Vec4<u8>& values) -> Math::Vec3<u8> {
switch (factor) {
case ColorModifier::SourceColor:
return values.rgb();
case ColorModifier::OneMinusSourceColor:
return (Math::Vec3<u8>(255, 255, 255) - values.rgb()).Cast<u8>();
case ColorModifier::SourceAlpha:
return values.aaa();
case ColorModifier::OneMinusSourceAlpha:
return (Math::Vec3<u8>(255, 255, 255) - values.aaa()).Cast<u8>();
case ColorModifier::SourceRed:
return values.rrr();
case ColorModifier::OneMinusSourceRed:
return (Math::Vec3<u8>(255, 255, 255) - values.rrr()).Cast<u8>();
case ColorModifier::SourceGreen:
return values.ggg();
case ColorModifier::OneMinusSourceGreen:
return (Math::Vec3<u8>(255, 255, 255) - values.ggg()).Cast<u8>();
case ColorModifier::SourceBlue:
return values.bbb();
case ColorModifier::OneMinusSourceBlue:
return (Math::Vec3<u8>(255, 255, 255) - values.bbb()).Cast<u8>();
}
};
static auto GetAlphaModifier = [](AlphaModifier factor, const Math::Vec4<u8>& values) -> u8 {
switch (factor) {
case AlphaModifier::SourceAlpha:
return values.a();
case AlphaModifier::OneMinusSourceAlpha:
return 255 - values.a();
case AlphaModifier::SourceRed:
return values.r();
case AlphaModifier::OneMinusSourceRed:
return 255 - values.r();
case AlphaModifier::SourceGreen:
return values.g();
case AlphaModifier::OneMinusSourceGreen:
return 255 - values.g();
case AlphaModifier::SourceBlue:
return values.b();
case AlphaModifier::OneMinusSourceBlue:
return 255 - values.b();
}
};
static auto ColorCombine = [](Operation op, const Math::Vec3<u8> input[3]) -> Math::Vec3<u8> {
switch (op) {
case Operation::Replace:
return input[0];
case Operation::Modulate:
return ((input[0] * input[1]) / 255).Cast<u8>();
case Operation::Add:
{
auto result = input[0] + input[1];
result.r() = std::min(255, result.r());
result.g() = std::min(255, result.g());
result.b() = std::min(255, result.b());
return result.Cast<u8>();
}
case Operation::Lerp:
return ((input[0] * input[2] + input[1] * (Math::MakeVec<u8>(255, 255, 255) - input[2]).Cast<u8>()) / 255).Cast<u8>();
case Operation::Subtract:
{
auto result = input[0].Cast<int>() - input[1].Cast<int>();
result.r() = std::max(0, result.r());
result.g() = std::max(0, result.g());
result.b() = std::max(0, result.b());
return result.Cast<u8>();
}
default:
LOG_ERROR(HW_GPU, "Unknown color combiner operation %d\n", (int)op);
UNIMPLEMENTED();
return {};
}
};
static auto AlphaCombine = [](Operation op, const std::array<u8,3>& input) -> u8 {
switch (op) {
case Operation::Replace:
return input[0];
case Operation::Modulate:
return input[0] * input[1] / 255;
case Operation::Add:
return std::min(255, input[0] + input[1]);
case Operation::Lerp:
return (input[0] * input[2] + input[1] * (255 - input[2])) / 255;
case Operation::Subtract:
return std::max(0, (int)input[0] - (int)input[1]);
default:
LOG_ERROR(HW_GPU, "Unknown alpha combiner operation %d\n", (int)op);
UNIMPLEMENTED();
return 0;
}
};
// color combiner
// NOTE: Not sure if the alpha combiner might use the color output of the previous
// stage as input. Hence, we currently don't directly write the result to
// combiner_output.rgb(), but instead store it in a temporary variable until
// alpha combining has been done.
Math::Vec3<u8> color_result[3] = {
GetColorModifier(tev_stage.color_modifier1, GetSource(tev_stage.color_source1)),
GetColorModifier(tev_stage.color_modifier2, GetSource(tev_stage.color_source2)),
GetColorModifier(tev_stage.color_modifier3, GetSource(tev_stage.color_source3))
};
auto color_output = ColorCombine(tev_stage.color_op, color_result);
// alpha combiner
std::array<u8,3> alpha_result = {
GetAlphaModifier(tev_stage.alpha_modifier1, GetSource(tev_stage.alpha_source1)),
GetAlphaModifier(tev_stage.alpha_modifier2, GetSource(tev_stage.alpha_source2)),
GetAlphaModifier(tev_stage.alpha_modifier3, GetSource(tev_stage.alpha_source3))
};
auto alpha_output = AlphaCombine(tev_stage.alpha_op, alpha_result);
combiner_output = Math::MakeVec(color_output, alpha_output);
}
if (registers.output_merger.alpha_test.enable) {
bool pass = false;
switch (registers.output_merger.alpha_test.func) {
case registers.output_merger.Never:
pass = false;
break;
case registers.output_merger.Always:
pass = true;
break;
case registers.output_merger.Equal:
pass = combiner_output.a() == registers.output_merger.alpha_test.ref;
break;
case registers.output_merger.NotEqual:
pass = combiner_output.a() != registers.output_merger.alpha_test.ref;
break;
case registers.output_merger.LessThan:
pass = combiner_output.a() < registers.output_merger.alpha_test.ref;
break;
case registers.output_merger.LessThanOrEqual:
pass = combiner_output.a() <= registers.output_merger.alpha_test.ref;
break;
case registers.output_merger.GreaterThan:
pass = combiner_output.a() > registers.output_merger.alpha_test.ref;
break;
case registers.output_merger.GreaterThanOrEqual:
pass = combiner_output.a() >= registers.output_merger.alpha_test.ref;
break;
}
if (!pass)
continue;
}
// TODO: Does depth indeed only get written even if depth testing is enabled?
if (registers.output_merger.depth_test_enable) {
u16 z = (u16)(-(v0.screenpos[2].ToFloat32() * w0 +
v1.screenpos[2].ToFloat32() * w1 +
v2.screenpos[2].ToFloat32() * w2) * 65535.f / wsum);
u16 ref_z = GetDepth(x >> 4, y >> 4);
bool pass = false;
switch (registers.output_merger.depth_test_func) {
case registers.output_merger.Never:
pass = false;
break;
case registers.output_merger.Always:
pass = true;
break;
case registers.output_merger.Equal:
pass = z == ref_z;
break;
case registers.output_merger.NotEqual:
pass = z != ref_z;
break;
case registers.output_merger.LessThan:
pass = z < ref_z;
break;
case registers.output_merger.LessThanOrEqual:
pass = z <= ref_z;
break;
case registers.output_merger.GreaterThan:
pass = z > ref_z;
break;
case registers.output_merger.GreaterThanOrEqual:
pass = z >= ref_z;
break;
}
if (!pass)
continue;
if (registers.output_merger.depth_write_enable)
SetDepth(x >> 4, y >> 4, z);
}
auto dest = GetPixel(x >> 4, y >> 4);
if (registers.output_merger.alphablend_enable) {
auto params = registers.output_merger.alpha_blending;
auto LookupFactorRGB = [&](decltype(params)::BlendFactor factor) -> Math::Vec3<u8> {
switch (factor) {
case params.Zero:
return Math::Vec3<u8>(0, 0, 0);
case params.One:
return Math::Vec3<u8>(255, 255, 255);
case params.SourceColor:
return combiner_output.rgb();
case params.OneMinusSourceColor:
return Math::Vec3<u8>(255 - combiner_output.r(), 255 - combiner_output.g(), 255 - combiner_output.b());
case params.DestColor:
return dest.rgb();
case params.OneMinusDestColor:
return Math::Vec3<u8>(255 - dest.r(), 255 - dest.g(), 255 - dest.b());
case params.SourceAlpha:
return Math::Vec3<u8>(combiner_output.a(), combiner_output.a(), combiner_output.a());
case params.OneMinusSourceAlpha:
return Math::Vec3<u8>(255 - combiner_output.a(), 255 - combiner_output.a(), 255 - combiner_output.a());
case params.DestAlpha:
return Math::Vec3<u8>(dest.a(), dest.a(), dest.a());
case params.OneMinusDestAlpha:
return Math::Vec3<u8>(255 - dest.a(), 255 - dest.a(), 255 - dest.a());
case params.ConstantColor:
return Math::Vec3<u8>(registers.output_merger.blend_const.r, registers.output_merger.blend_const.g, registers.output_merger.blend_const.b);
case params.OneMinusConstantColor:
return Math::Vec3<u8>(255 - registers.output_merger.blend_const.r, 255 - registers.output_merger.blend_const.g, 255 - registers.output_merger.blend_const.b);
case params.ConstantAlpha:
return Math::Vec3<u8>(registers.output_merger.blend_const.a, registers.output_merger.blend_const.a, registers.output_merger.blend_const.a);
case params.OneMinusConstantAlpha:
return Math::Vec3<u8>(255 - registers.output_merger.blend_const.a, 255 - registers.output_merger.blend_const.a, 255 - registers.output_merger.blend_const.a);
default:
LOG_CRITICAL(HW_GPU, "Unknown color blend factor %x", factor);
exit(0);
break;
}
};
auto LookupFactorA = [&](decltype(params)::BlendFactor factor) -> u8 {
switch (factor) {
case params.Zero:
return 0;
case params.One:
return 255;
case params.SourceAlpha:
return combiner_output.a();
case params.OneMinusSourceAlpha:
return 255 - combiner_output.a();
case params.DestAlpha:
return dest.a();
case params.OneMinusDestAlpha:
return 255 - dest.a();
case params.ConstantAlpha:
return registers.output_merger.blend_const.a;
case params.OneMinusConstantAlpha:
return 255 - registers.output_merger.blend_const.a;
default:
LOG_CRITICAL(HW_GPU, "Unknown alpha blend factor %x", factor);
exit(0);
break;
}
};
auto srcfactor = Math::MakeVec(LookupFactorRGB(params.factor_source_rgb),
LookupFactorA(params.factor_source_a));
auto dstfactor = Math::MakeVec(LookupFactorRGB(params.factor_dest_rgb),
LookupFactorA(params.factor_dest_a));
auto src_result = (combiner_output * srcfactor).Cast<int>();
auto dst_result = (dest * dstfactor).Cast<int>();
switch (params.blend_equation_rgb) {
case params.Add:
{
auto result = (src_result + dst_result) / 255;
result.r() = std::min(255, result.r());
result.g() = std::min(255, result.g());
result.b() = std::min(255, result.b());
combiner_output = result.Cast<u8>();
break;
}
case params.Subtract:
{
auto result = (src_result - dst_result) / 255;
result.r() = std::max(0, result.r());
result.g() = std::max(0, result.g());
result.b() = std::max(0, result.b());
combiner_output = result.Cast<u8>();
break;
}
case params.ReverseSubtract:
{
auto result = (dst_result - src_result) / 255;
result.r() = std::max(0, result.r());
result.g() = std::max(0, result.g());
result.b() = std::max(0, result.b());
combiner_output = result.Cast<u8>();
break;
}
case params.Min:
{
Math::Vec4<int> result;
result.r() = std::min(src_result.r(),dst_result.r());
result.g() = std::min(src_result.g(),dst_result.g());
result.b() = std::min(src_result.b(),dst_result.b());
combiner_output = result.Cast<u8>();
break;
}
case params.Max:
{
Math::Vec4<int> result;
result.r() = std::max(src_result.r(),dst_result.r());
result.g() = std::max(src_result.g(),dst_result.g());
result.b() = std::max(src_result.b(),dst_result.b());
combiner_output = result.Cast<u8>();
break;
}
default:
LOG_CRITICAL(HW_GPU, "Unknown RGB blend equation %x", params.blend_equation_rgb.Value());
exit(0);
}
} else {
LOG_CRITICAL(HW_GPU, "logic op: %x", registers.output_merger.logic_op);
exit(0);
}
const Math::Vec4<u8> result = {
registers.output_merger.red_enable ? combiner_output.r() : dest.r(),
registers.output_merger.green_enable ? combiner_output.g() : dest.g(),
registers.output_merger.blue_enable ? combiner_output.b() : dest.b(),
registers.output_merger.alpha_enable ? combiner_output.a() : dest.a()
};
DrawPixel(x >> 4, y >> 4, result);
}
}
}
} // namespace Rasterizer
} // namespace Pica