citra/src/core/hle/kernel/hle_ipc.cpp
Lioncash 5dfa7b74b5 thread: Convert ThreadStatus into an enum class
Makes the thread status strongly typed, so implicit conversions can't
happen. It also makes it easier to catch mistakes at compile time.
2018-09-15 17:02:44 +02:00

253 lines
10 KiB
C++

// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <vector>
#include "common/assert.h"
#include "common/common_types.h"
#include "core/hle/kernel/event.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/hle_ipc.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/process.h"
namespace Kernel {
SessionRequestHandler::SessionInfo::SessionInfo(SharedPtr<ServerSession> session,
std::unique_ptr<SessionDataBase> data)
: session(std::move(session)), data(std::move(data)) {}
void SessionRequestHandler::ClientConnected(SharedPtr<ServerSession> server_session) {
server_session->SetHleHandler(shared_from_this());
connected_sessions.emplace_back(std::move(server_session), MakeSessionData());
}
void SessionRequestHandler::ClientDisconnected(SharedPtr<ServerSession> server_session) {
server_session->SetHleHandler(nullptr);
connected_sessions.erase(
std::remove_if(connected_sessions.begin(), connected_sessions.end(),
[&](const SessionInfo& info) { return info.session == server_session; }),
connected_sessions.end());
}
SharedPtr<Event> HLERequestContext::SleepClientThread(SharedPtr<Thread> thread,
const std::string& reason,
std::chrono::nanoseconds timeout,
WakeupCallback&& callback) {
// Put the client thread to sleep until the wait event is signaled or the timeout expires.
thread->wakeup_callback = [context = *this, callback](ThreadWakeupReason reason,
SharedPtr<Thread> thread,
SharedPtr<WaitObject> object) mutable {
ASSERT(thread->status == ThreadStatus::WaitHleEvent);
callback(thread, context, reason);
auto& process = thread->owner_process;
// We must copy the entire command buffer *plus* the entire static buffers area, since
// the translation might need to read from it in order to retrieve the StaticBuffer
// target addresses.
std::array<u32_le, IPC::COMMAND_BUFFER_LENGTH + 2 * IPC::MAX_STATIC_BUFFERS> cmd_buff;
Memory::ReadBlock(*process, thread->GetCommandBufferAddress(), cmd_buff.data(),
cmd_buff.size() * sizeof(u32));
context.WriteToOutgoingCommandBuffer(cmd_buff.data(), *process, Kernel::g_handle_table);
// Copy the translated command buffer back into the thread's command buffer area.
Memory::WriteBlock(*process, thread->GetCommandBufferAddress(), cmd_buff.data(),
cmd_buff.size() * sizeof(u32));
};
auto event = Kernel::Event::Create(Kernel::ResetType::OneShot, "HLE Pause Event: " + reason);
thread->status = ThreadStatus::WaitHleEvent;
thread->wait_objects = {event};
event->AddWaitingThread(thread);
if (timeout.count() > 0)
thread->WakeAfterDelay(timeout.count());
return event;
}
HLERequestContext::HLERequestContext(SharedPtr<ServerSession> session)
: session(std::move(session)) {
cmd_buf[0] = 0;
}
HLERequestContext::~HLERequestContext() = default;
SharedPtr<Object> HLERequestContext::GetIncomingHandle(u32 id_from_cmdbuf) const {
ASSERT(id_from_cmdbuf < request_handles.size());
return request_handles[id_from_cmdbuf];
}
u32 HLERequestContext::AddOutgoingHandle(SharedPtr<Object> object) {
request_handles.push_back(std::move(object));
return static_cast<u32>(request_handles.size() - 1);
}
void HLERequestContext::ClearIncomingObjects() {
request_handles.clear();
}
const std::vector<u8>& HLERequestContext::GetStaticBuffer(u8 buffer_id) const {
return static_buffers[buffer_id];
}
void HLERequestContext::AddStaticBuffer(u8 buffer_id, std::vector<u8> data) {
static_buffers[buffer_id] = std::move(data);
}
ResultCode HLERequestContext::PopulateFromIncomingCommandBuffer(const u32_le* src_cmdbuf,
Process& src_process,
HandleTable& src_table) {
IPC::Header header{src_cmdbuf[0]};
std::size_t untranslated_size = 1u + header.normal_params_size;
std::size_t command_size = untranslated_size + header.translate_params_size;
ASSERT(command_size <= IPC::COMMAND_BUFFER_LENGTH); // TODO(yuriks): Return error
std::copy_n(src_cmdbuf, untranslated_size, cmd_buf.begin());
std::size_t i = untranslated_size;
while (i < command_size) {
u32 descriptor = cmd_buf[i] = src_cmdbuf[i];
i += 1;
switch (IPC::GetDescriptorType(descriptor)) {
case IPC::DescriptorType::CopyHandle:
case IPC::DescriptorType::MoveHandle: {
u32 num_handles = IPC::HandleNumberFromDesc(descriptor);
ASSERT(i + num_handles <= command_size); // TODO(yuriks): Return error
for (u32 j = 0; j < num_handles; ++j) {
Handle handle = src_cmdbuf[i];
SharedPtr<Object> object = nullptr;
if (handle != 0) {
object = src_table.GetGeneric(handle);
ASSERT(object != nullptr); // TODO(yuriks): Return error
if (descriptor == IPC::DescriptorType::MoveHandle) {
src_table.Close(handle);
}
}
cmd_buf[i++] = AddOutgoingHandle(std::move(object));
}
break;
}
case IPC::DescriptorType::CallingPid: {
cmd_buf[i++] = src_process.process_id;
break;
}
case IPC::DescriptorType::StaticBuffer: {
VAddr source_address = src_cmdbuf[i];
IPC::StaticBufferDescInfo buffer_info{descriptor};
// Copy the input buffer into our own vector and store it.
std::vector<u8> data(buffer_info.size);
Memory::ReadBlock(src_process, source_address, data.data(), data.size());
AddStaticBuffer(buffer_info.buffer_id, std::move(data));
cmd_buf[i++] = source_address;
break;
}
case IPC::DescriptorType::MappedBuffer: {
u32 next_id = static_cast<u32>(request_mapped_buffers.size());
request_mapped_buffers.emplace_back(src_process, descriptor, src_cmdbuf[i], next_id);
cmd_buf[i++] = next_id;
break;
}
default:
UNIMPLEMENTED_MSG("Unsupported handle translation: {:#010X}", descriptor);
}
}
return RESULT_SUCCESS;
}
ResultCode HLERequestContext::WriteToOutgoingCommandBuffer(u32_le* dst_cmdbuf, Process& dst_process,
HandleTable& dst_table) const {
IPC::Header header{cmd_buf[0]};
std::size_t untranslated_size = 1u + header.normal_params_size;
std::size_t command_size = untranslated_size + header.translate_params_size;
ASSERT(command_size <= IPC::COMMAND_BUFFER_LENGTH);
std::copy_n(cmd_buf.begin(), untranslated_size, dst_cmdbuf);
std::size_t i = untranslated_size;
while (i < command_size) {
u32 descriptor = dst_cmdbuf[i] = cmd_buf[i];
i += 1;
switch (IPC::GetDescriptorType(descriptor)) {
case IPC::DescriptorType::CopyHandle:
case IPC::DescriptorType::MoveHandle: {
// HLE services don't use handles, so we treat both CopyHandle and MoveHandle equally
u32 num_handles = IPC::HandleNumberFromDesc(descriptor);
ASSERT(i + num_handles <= command_size);
for (u32 j = 0; j < num_handles; ++j) {
SharedPtr<Object> object = GetIncomingHandle(cmd_buf[i]);
Handle handle = 0;
if (object != nullptr) {
// TODO(yuriks): Figure out the proper error handling for if this fails
handle = dst_table.Create(object).Unwrap();
}
dst_cmdbuf[i++] = handle;
}
break;
}
case IPC::DescriptorType::StaticBuffer: {
IPC::StaticBufferDescInfo buffer_info{descriptor};
const auto& data = GetStaticBuffer(buffer_info.buffer_id);
// Grab the address that the target thread set up to receive the response static buffer
// and write our data there. The static buffers area is located right after the command
// buffer area.
std::size_t static_buffer_offset =
IPC::COMMAND_BUFFER_LENGTH + 2 * buffer_info.buffer_id;
IPC::StaticBufferDescInfo target_descriptor{dst_cmdbuf[static_buffer_offset]};
VAddr target_address = dst_cmdbuf[static_buffer_offset + 1];
ASSERT_MSG(target_descriptor.size >= data.size(), "Static buffer data is too big");
Memory::WriteBlock(dst_process, target_address, data.data(), data.size());
dst_cmdbuf[i++] = target_address;
break;
}
case IPC::DescriptorType::MappedBuffer: {
VAddr addr = request_mapped_buffers[cmd_buf[i]].address;
dst_cmdbuf[i++] = addr;
break;
}
default:
UNIMPLEMENTED_MSG("Unsupported handle translation: {:#010X}", descriptor);
}
}
return RESULT_SUCCESS;
}
MappedBuffer& HLERequestContext::GetMappedBuffer(u32 id_from_cmdbuf) {
ASSERT_MSG(id_from_cmdbuf < request_mapped_buffers.size(), "Mapped Buffer ID out of range!");
return request_mapped_buffers[id_from_cmdbuf];
}
MappedBuffer::MappedBuffer(const Process& process, u32 descriptor, VAddr address, u32 id)
: id(id), address(address), process(&process) {
IPC::MappedBufferDescInfo desc{descriptor};
size = desc.size;
perms = desc.perms;
}
void MappedBuffer::Read(void* dest_buffer, std::size_t offset, std::size_t size) {
ASSERT(perms & IPC::R);
ASSERT(offset + size <= this->size);
Memory::ReadBlock(*process, address + static_cast<VAddr>(offset), dest_buffer, size);
}
void MappedBuffer::Write(const void* src_buffer, std::size_t offset, std::size_t size) {
ASSERT(perms & IPC::W);
ASSERT(offset + size <= this->size);
Memory::WriteBlock(*process, address + static_cast<VAddr>(offset), src_buffer, size);
}
} // namespace Kernel