citra/src/core/core.cpp
ameerj 98e9f4c32e logging: Fix log filter during initialization
The log filter was being ignored on initialization due to the logging instance being initialized before the config instance, so the log filter was set to its default value.

This fixes that oversight, along with using descriptive exceptions instead of abort() calls.
2023-06-30 12:15:51 +03:00

673 lines
22 KiB
C++

// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <exception>
#include <memory>
#include <stdexcept>
#include <utility>
#include <boost/serialization/array.hpp>
#include "audio_core/dsp_interface.h"
#include "audio_core/hle/hle.h"
#include "audio_core/lle/lle.h"
#include "common/arch.h"
#include "common/logging/log.h"
#include "common/settings.h"
#include "common/texture.h"
#include "core/arm/arm_interface.h"
#include "core/arm/exclusive_monitor.h"
#if CITRA_ARCH(x86_64) || CITRA_ARCH(arm64)
#include "core/arm/dynarmic/arm_dynarmic.h"
#endif
#include "core/arm/dyncom/arm_dyncom.h"
#include "core/cheats/cheats.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/dumping/backend.h"
#include "core/dumping/ffmpeg_backend.h"
#include "core/frontend/image_interface.h"
#include "core/gdbstub/gdbstub.h"
#include "core/global.h"
#include "core/hle/kernel/client_port.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/service/apt/applet_manager.h"
#include "core/hle/service/apt/apt.h"
#include "core/hle/service/fs/archive.h"
#include "core/hle/service/gsp/gsp.h"
#include "core/hle/service/pm/pm_app.h"
#include "core/hle/service/service.h"
#include "core/hle/service/sm/sm.h"
#include "core/hw/gpu.h"
#include "core/hw/hw.h"
#include "core/hw/lcd.h"
#include "core/loader/loader.h"
#include "core/movie.h"
#include "core/rpc/rpc_server.h"
#include "network/network.h"
#include "video_core/custom_textures/custom_tex_manager.h"
#include "video_core/renderer_base.h"
#include "video_core/video_core.h"
namespace Core {
template <>
Core::System& Global() {
return System::GetInstance();
}
template <>
Kernel::KernelSystem& Global() {
return System::GetInstance().Kernel();
}
template <>
Core::Timing& Global() {
return System::GetInstance().CoreTiming();
}
System::~System() = default;
System& System::GetInstance() {
if (!s_instance) {
throw std::runtime_error("Using System instance before its initialization");
}
return *s_instance;
}
void System::InitializeGlobalInstance() {
if (s_instance) {
throw std::runtime_error("Reinitializing Global System instance.");
}
s_instance = std::unique_ptr<System>(new System);
}
System::ResultStatus System::RunLoop(bool tight_loop) {
status = ResultStatus::Success;
if (!IsPoweredOn()) {
return ResultStatus::ErrorNotInitialized;
}
if (GDBStub::IsServerEnabled()) {
Kernel::Thread* thread = kernel->GetCurrentThreadManager().GetCurrentThread();
if (thread && running_core) {
running_core->SaveContext(thread->context);
}
GDBStub::HandlePacket();
// If the loop is halted and we want to step, use a tiny (1) number of instructions to
// execute. Otherwise, get out of the loop function.
if (GDBStub::GetCpuHaltFlag()) {
if (GDBStub::GetCpuStepFlag()) {
tight_loop = false;
} else {
return ResultStatus::Success;
}
}
}
Signal signal{Signal::None};
u32 param{};
{
std::lock_guard lock{signal_mutex};
if (current_signal != Signal::None) {
signal = current_signal;
param = signal_param;
current_signal = Signal::None;
}
}
switch (signal) {
case Signal::Reset:
Reset();
return ResultStatus::Success;
case Signal::Shutdown:
return ResultStatus::ShutdownRequested;
case Signal::Load: {
const u32 slot = param;
LOG_INFO(Core, "Begin load of slot {}", slot);
try {
System::LoadState(slot);
LOG_INFO(Core, "Load completed");
} catch (const std::exception& e) {
LOG_ERROR(Core, "Error loading: {}", e.what());
status_details = e.what();
return ResultStatus::ErrorSavestate;
}
frame_limiter.WaitOnce();
return ResultStatus::Success;
}
case Signal::Save: {
const u32 slot = param;
LOG_INFO(Core, "Begin save to slot {}", slot);
try {
System::SaveState(slot);
LOG_INFO(Core, "Save completed");
} catch (const std::exception& e) {
LOG_ERROR(Core, "Error saving: {}", e.what());
status_details = e.what();
return ResultStatus::ErrorSavestate;
}
frame_limiter.WaitOnce();
return ResultStatus::Success;
}
default:
break;
}
// All cores should have executed the same amount of ticks. If this is not the case an event was
// scheduled with a cycles_into_future smaller then the current downcount.
// So we have to get those cores to the same global time first
u64 global_ticks = timing->GetGlobalTicks();
s64 max_delay = 0;
ARM_Interface* current_core_to_execute = nullptr;
for (auto& cpu_core : cpu_cores) {
if (cpu_core->GetTimer().GetTicks() < global_ticks) {
s64 delay = global_ticks - cpu_core->GetTimer().GetTicks();
kernel->SetRunningCPU(cpu_core.get());
cpu_core->GetTimer().Advance();
cpu_core->PrepareReschedule();
kernel->GetThreadManager(cpu_core->GetID()).Reschedule();
cpu_core->GetTimer().SetNextSlice(delay);
if (max_delay < delay) {
max_delay = delay;
current_core_to_execute = cpu_core.get();
}
}
}
// jit sometimes overshoot by a few ticks which might lead to a minimal desync in the cores.
// This small difference shouldn't make it necessary to sync the cores and would only cost
// performance. Thus we don't sync delays below min_delay
static constexpr s64 min_delay = 100;
if (max_delay > min_delay) {
LOG_TRACE(Core_ARM11, "Core {} running (delayed) for {} ticks",
current_core_to_execute->GetID(),
current_core_to_execute->GetTimer().GetDowncount());
if (running_core != current_core_to_execute) {
running_core = current_core_to_execute;
kernel->SetRunningCPU(running_core);
}
if (kernel->GetCurrentThreadManager().GetCurrentThread() == nullptr) {
LOG_TRACE(Core_ARM11, "Core {} idling", current_core_to_execute->GetID());
current_core_to_execute->GetTimer().Idle();
PrepareReschedule();
} else {
if (tight_loop) {
current_core_to_execute->Run();
} else {
current_core_to_execute->Step();
}
}
} else {
// Now all cores are at the same global time. So we will run them one after the other
// with a max slice that is the minimum of all max slices of all cores
// TODO: Make special check for idle since we can easily revert the time of idle cores
s64 max_slice = Timing::MAX_SLICE_LENGTH;
for (const auto& cpu_core : cpu_cores) {
kernel->SetRunningCPU(cpu_core.get());
cpu_core->GetTimer().Advance();
cpu_core->PrepareReschedule();
kernel->GetThreadManager(cpu_core->GetID()).Reschedule();
max_slice = std::min(max_slice, cpu_core->GetTimer().GetMaxSliceLength());
}
for (auto& cpu_core : cpu_cores) {
cpu_core->GetTimer().SetNextSlice(max_slice);
auto start_ticks = cpu_core->GetTimer().GetTicks();
LOG_TRACE(Core_ARM11, "Core {} running for {} ticks", cpu_core->GetID(),
cpu_core->GetTimer().GetDowncount());
running_core = cpu_core.get();
kernel->SetRunningCPU(running_core);
// If we don't have a currently active thread then don't execute instructions,
// instead advance to the next event and try to yield to the next thread
if (kernel->GetCurrentThreadManager().GetCurrentThread() == nullptr) {
LOG_TRACE(Core_ARM11, "Core {} idling", cpu_core->GetID());
cpu_core->GetTimer().Idle();
PrepareReschedule();
} else {
if (tight_loop) {
cpu_core->Run();
} else {
cpu_core->Step();
}
}
max_slice = cpu_core->GetTimer().GetTicks() - start_ticks;
}
}
if (GDBStub::IsServerEnabled()) {
GDBStub::SetCpuStepFlag(false);
}
HW::Update();
Reschedule();
return status;
}
bool System::SendSignal(System::Signal signal, u32 param) {
std::lock_guard lock{signal_mutex};
if (current_signal != signal && current_signal != Signal::None) {
LOG_ERROR(Core, "Unable to {} as {} is ongoing", signal, current_signal);
return false;
}
current_signal = signal;
signal_param = param;
return true;
}
System::ResultStatus System::SingleStep() {
return RunLoop(false);
}
System::ResultStatus System::Load(Frontend::EmuWindow& emu_window, const std::string& filepath,
Frontend::EmuWindow* secondary_window) {
FileUtil::SetCurrentRomPath(filepath);
app_loader = Loader::GetLoader(filepath);
if (!app_loader) {
LOG_CRITICAL(Core, "Failed to obtain loader for {}!", filepath);
return ResultStatus::ErrorGetLoader;
}
std::pair<std::optional<u32>, Loader::ResultStatus> system_mode =
app_loader->LoadKernelSystemMode();
if (system_mode.second != Loader::ResultStatus::Success) {
LOG_CRITICAL(Core, "Failed to determine system mode (Error {})!",
static_cast<int>(system_mode.second));
switch (system_mode.second) {
case Loader::ResultStatus::ErrorEncrypted:
return ResultStatus::ErrorLoader_ErrorEncrypted;
case Loader::ResultStatus::ErrorInvalidFormat:
return ResultStatus::ErrorLoader_ErrorInvalidFormat;
case Loader::ResultStatus::ErrorGbaTitle:
return ResultStatus::ErrorLoader_ErrorGbaTitle;
default:
return ResultStatus::ErrorSystemMode;
}
}
ASSERT(system_mode.first);
auto n3ds_mode = app_loader->LoadKernelN3dsMode();
ASSERT(n3ds_mode.first);
u32 num_cores = 2;
if (Settings::values.is_new_3ds) {
num_cores = 4;
}
ResultStatus init_result{
Init(emu_window, secondary_window, *system_mode.first, *n3ds_mode.first, num_cores)};
if (init_result != ResultStatus::Success) {
LOG_CRITICAL(Core, "Failed to initialize system (Error {})!",
static_cast<u32>(init_result));
System::Shutdown();
return init_result;
}
telemetry_session->AddInitialInfo(*app_loader);
std::shared_ptr<Kernel::Process> process;
const Loader::ResultStatus load_result{app_loader->Load(process)};
if (Loader::ResultStatus::Success != load_result) {
LOG_CRITICAL(Core, "Failed to load ROM (Error {})!", load_result);
System::Shutdown();
switch (load_result) {
case Loader::ResultStatus::ErrorEncrypted:
return ResultStatus::ErrorLoader_ErrorEncrypted;
case Loader::ResultStatus::ErrorInvalidFormat:
return ResultStatus::ErrorLoader_ErrorInvalidFormat;
case Loader::ResultStatus::ErrorGbaTitle:
return ResultStatus::ErrorLoader_ErrorGbaTitle;
default:
return ResultStatus::ErrorLoader;
}
}
kernel->SetCurrentProcess(process);
title_id = 0;
if (app_loader->ReadProgramId(title_id) != Loader::ResultStatus::Success) {
LOG_ERROR(Core, "Failed to find title id for ROM (Error {})",
static_cast<u32>(load_result));
}
cheat_engine = std::make_unique<Cheats::CheatEngine>(title_id, *this);
perf_stats = std::make_unique<PerfStats>(title_id);
if (Settings::values.custom_textures) {
custom_tex_manager->FindCustomTextures();
}
if (Settings::values.dump_textures) {
custom_tex_manager->WriteConfig();
}
status = ResultStatus::Success;
m_emu_window = &emu_window;
m_secondary_window = secondary_window;
m_filepath = filepath;
self_delete_pending = false;
// Reset counters and set time origin to current frame
[[maybe_unused]] const PerfStats::Results result = GetAndResetPerfStats();
perf_stats->BeginSystemFrame();
return status;
}
void System::PrepareReschedule() {
running_core->PrepareReschedule();
reschedule_pending = true;
}
PerfStats::Results System::GetAndResetPerfStats() {
return (perf_stats && timing) ? perf_stats->GetAndResetStats(timing->GetGlobalTimeUs())
: PerfStats::Results{};
}
void System::Reschedule() {
if (!reschedule_pending) {
return;
}
reschedule_pending = false;
for (const auto& core : cpu_cores) {
LOG_TRACE(Core_ARM11, "Reschedule core {}", core->GetID());
kernel->GetThreadManager(core->GetID()).Reschedule();
}
}
System::ResultStatus System::Init(Frontend::EmuWindow& emu_window,
Frontend::EmuWindow* secondary_window, u32 system_mode,
u8 n3ds_mode, u32 num_cores) {
LOG_DEBUG(HW_Memory, "initialized OK");
memory = std::make_unique<Memory::MemorySystem>();
timing = std::make_unique<Timing>(num_cores, Settings::values.cpu_clock_percentage.GetValue());
kernel = std::make_unique<Kernel::KernelSystem>(
*memory, *timing, [this] { PrepareReschedule(); }, system_mode, num_cores, n3ds_mode);
exclusive_monitor = MakeExclusiveMonitor(*memory, num_cores);
cpu_cores.reserve(num_cores);
if (Settings::values.use_cpu_jit) {
#if CITRA_ARCH(x86_64) || CITRA_ARCH(arm64)
for (u32 i = 0; i < num_cores; ++i) {
cpu_cores.push_back(std::make_shared<ARM_Dynarmic>(
this, *memory, i, timing->GetTimer(i), *exclusive_monitor));
}
#else
for (u32 i = 0; i < num_cores; ++i) {
cpu_cores.push_back(
std::make_shared<ARM_DynCom>(this, *memory, USER32MODE, i, timing->GetTimer(i)));
}
LOG_WARNING(Core, "CPU JIT requested, but Dynarmic not available");
#endif
} else {
for (u32 i = 0; i < num_cores; ++i) {
cpu_cores.push_back(
std::make_shared<ARM_DynCom>(this, *memory, USER32MODE, i, timing->GetTimer(i)));
}
}
running_core = cpu_cores[0].get();
kernel->SetCPUs(cpu_cores);
kernel->SetRunningCPU(cpu_cores[0].get());
const auto audio_emulation = Settings::values.audio_emulation.GetValue();
if (audio_emulation == Settings::AudioEmulation::HLE) {
dsp_core = std::make_unique<AudioCore::DspHle>(*memory, *timing);
} else {
const bool multithread = audio_emulation == Settings::AudioEmulation::LLEMultithreaded;
dsp_core = std::make_unique<AudioCore::DspLle>(*memory, *timing, multithread);
}
memory->SetDSP(*dsp_core);
dsp_core->SetSink(Settings::values.output_type.GetValue(),
Settings::values.output_device.GetValue());
dsp_core->EnableStretching(Settings::values.enable_audio_stretching.GetValue());
telemetry_session = std::make_unique<Core::TelemetrySession>();
rpc_server = std::make_unique<RPC::RPCServer>();
service_manager = std::make_unique<Service::SM::ServiceManager>(*this);
archive_manager = std::make_unique<Service::FS::ArchiveManager>(*this);
HW::Init(*memory);
Service::Init(*this);
GDBStub::DeferStart();
if (!registered_image_interface) {
registered_image_interface = std::make_shared<Frontend::ImageInterface>();
}
custom_tex_manager = std::make_unique<VideoCore::CustomTexManager>(*this);
VideoCore::Init(emu_window, secondary_window, *this);
LOG_DEBUG(Core, "Initialized OK");
is_powered_on = true;
return ResultStatus::Success;
}
VideoCore::RendererBase& System::Renderer() {
return *VideoCore::g_renderer;
}
Service::SM::ServiceManager& System::ServiceManager() {
return *service_manager;
}
const Service::SM::ServiceManager& System::ServiceManager() const {
return *service_manager;
}
Service::FS::ArchiveManager& System::ArchiveManager() {
return *archive_manager;
}
const Service::FS::ArchiveManager& System::ArchiveManager() const {
return *archive_manager;
}
Kernel::KernelSystem& System::Kernel() {
return *kernel;
}
const Kernel::KernelSystem& System::Kernel() const {
return *kernel;
}
bool System::KernelRunning() {
return kernel != nullptr;
}
Timing& System::CoreTiming() {
return *timing;
}
const Timing& System::CoreTiming() const {
return *timing;
}
Memory::MemorySystem& System::Memory() {
return *memory;
}
const Memory::MemorySystem& System::Memory() const {
return *memory;
}
Cheats::CheatEngine& System::CheatEngine() {
return *cheat_engine;
}
const Cheats::CheatEngine& System::CheatEngine() const {
return *cheat_engine;
}
void System::RegisterVideoDumper(std::shared_ptr<VideoDumper::Backend> dumper) {
video_dumper = std::move(dumper);
}
VideoCore::CustomTexManager& System::CustomTexManager() {
return *custom_tex_manager;
}
const VideoCore::CustomTexManager& System::CustomTexManager() const {
return *custom_tex_manager;
}
void System::RegisterMiiSelector(std::shared_ptr<Frontend::MiiSelector> mii_selector) {
registered_mii_selector = std::move(mii_selector);
}
void System::RegisterSoftwareKeyboard(std::shared_ptr<Frontend::SoftwareKeyboard> swkbd) {
registered_swkbd = std::move(swkbd);
}
void System::RegisterImageInterface(std::shared_ptr<Frontend::ImageInterface> image_interface) {
registered_image_interface = std::move(image_interface);
}
void System::Shutdown(bool is_deserializing) {
// Log last frame performance stats
const auto perf_results = GetAndResetPerfStats();
constexpr auto performance = Common::Telemetry::FieldType::Performance;
telemetry_session->AddField(performance, "Shutdown_EmulationSpeed",
perf_results.emulation_speed * 100.0);
telemetry_session->AddField(performance, "Shutdown_Framerate", perf_results.game_fps);
telemetry_session->AddField(performance, "Shutdown_Frametime", perf_results.frametime * 1000.0);
telemetry_session->AddField(performance, "Mean_Frametime_MS",
perf_stats ? perf_stats->GetMeanFrametime() : 0);
// Shutdown emulation session
is_powered_on = false;
VideoCore::Shutdown();
HW::Shutdown();
if (!is_deserializing) {
GDBStub::Shutdown();
perf_stats.reset();
cheat_engine.reset();
app_loader.reset();
}
custom_tex_manager.reset();
telemetry_session.reset();
rpc_server.reset();
archive_manager.reset();
service_manager.reset();
dsp_core.reset();
kernel.reset();
cpu_cores.clear();
exclusive_monitor.reset();
timing.reset();
if (video_dumper && video_dumper->IsDumping()) {
video_dumper->StopDumping();
}
if (auto room_member = Network::GetRoomMember().lock()) {
Network::GameInfo game_info{};
room_member->SendGameInfo(game_info);
}
memory.reset();
if (self_delete_pending)
FileUtil::Delete(m_filepath);
self_delete_pending = false;
LOG_DEBUG(Core, "Shutdown OK");
}
void System::Reset() {
// This is NOT a proper reset, but a temporary workaround by shutting down the system and
// reloading.
// TODO: Properly implement the reset
// Since the system is completely reinitialized, we'll have to store the deliver arg manually.
boost::optional<Service::APT::DeliverArg> deliver_arg;
if (auto apt = Service::APT::GetModule(*this)) {
deliver_arg = apt->GetAppletManager()->ReceiveDeliverArg();
}
Shutdown();
if (!m_chainloadpath.empty()) {
m_filepath = m_chainloadpath;
m_chainloadpath.clear();
}
// Reload the system with the same setting
[[maybe_unused]] const System::ResultStatus result =
Load(*m_emu_window, m_filepath, m_secondary_window);
// Restore the deliver arg.
if (auto apt = Service::APT::GetModule(*this)) {
apt->GetAppletManager()->SetDeliverArg(std::move(deliver_arg));
}
}
template <class Archive>
void System::serialize(Archive& ar, const unsigned int file_version) {
u32 num_cores;
if (Archive::is_saving::value) {
num_cores = this->GetNumCores();
}
ar& num_cores;
if (Archive::is_loading::value) {
// When loading, we want to make sure any lingering state gets cleared out before we begin.
// Shutdown, but persist a few things between loads...
Shutdown(true);
// Re-initialize everything like it was before
auto system_mode = this->app_loader->LoadKernelSystemMode();
auto n3ds_mode = this->app_loader->LoadKernelN3dsMode();
[[maybe_unused]] const System::ResultStatus result = Init(
*m_emu_window, m_secondary_window, *system_mode.first, *n3ds_mode.first, num_cores);
}
// flush on save, don't flush on load
bool should_flush = !Archive::is_loading::value;
Memory::RasterizerClearAll(should_flush);
ar&* timing.get();
for (u32 i = 0; i < num_cores; i++) {
ar&* cpu_cores[i].get();
}
ar&* service_manager.get();
ar&* archive_manager.get();
ar& GPU::g_regs;
ar& LCD::g_regs;
// NOTE: DSP doesn't like being destroyed and recreated. So instead we do an inline
// serialization; this means that the DSP Settings need to match for loading to work.
auto dsp_hle = dynamic_cast<AudioCore::DspHle*>(dsp_core.get());
if (dsp_hle) {
ar&* dsp_hle;
} else {
throw std::runtime_error("LLE audio not supported for save states");
}
ar&* memory.get();
ar&* kernel.get();
VideoCore::serialize(ar, file_version);
if (file_version >= 1) {
ar& Movie::GetInstance();
}
// This needs to be set from somewhere - might as well be here!
if (Archive::is_loading::value) {
timing->UnlockEventQueue();
Service::GSP::SetGlobalModule(*this);
memory->SetDSP(*dsp_core);
cheat_engine->Connect();
VideoCore::g_renderer->Sync();
}
}
SERIALIZE_IMPL(System)
} // namespace Core