citra/src/video_core/command_processor.cpp

678 lines
29 KiB
C++

// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <array>
#include <cstddef>
#include <cstring>
#include <memory>
#include <utility>
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "common/vector_math.h"
#include "core/hle/service/gsp/gsp.h"
#include "core/hw/gpu.h"
#include "core/memory.h"
#include "core/tracer/recorder.h"
#include "video_core/command_processor.h"
#include "video_core/debug_utils/debug_utils.h"
#include "video_core/pica_state.h"
#include "video_core/pica_types.h"
#include "video_core/primitive_assembly.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/regs.h"
#include "video_core/regs_pipeline.h"
#include "video_core/regs_texturing.h"
#include "video_core/renderer_base.h"
#include "video_core/shader/shader.h"
#include "video_core/vertex_loader.h"
#include "video_core/video_core.h"
namespace Pica::CommandProcessor {
// Expand a 4-bit mask to 4-byte mask, e.g. 0b0101 -> 0x00FF00FF
constexpr std::array<u32, 16> expand_bits_to_bytes{
0x00000000, 0x000000ff, 0x0000ff00, 0x0000ffff, 0x00ff0000, 0x00ff00ff, 0x00ffff00, 0x00ffffff,
0xff000000, 0xff0000ff, 0xff00ff00, 0xff00ffff, 0xffff0000, 0xffff00ff, 0xffffff00, 0xffffffff,
};
MICROPROFILE_DEFINE(GPU_Drawing, "GPU", "Drawing", MP_RGB(50, 50, 240));
static const char* GetShaderSetupTypeName(Shader::ShaderSetup& setup) {
if (&setup == &g_state.vs) {
return "vertex shader";
}
if (&setup == &g_state.gs) {
return "geometry shader";
}
return "unknown shader";
}
static void WriteUniformBoolReg(Shader::ShaderSetup& setup, u32 value) {
for (unsigned i = 0; i < setup.uniforms.b.size(); ++i)
setup.uniforms.b[i] = (value & (1 << i)) != 0;
}
static void WriteUniformIntReg(Shader::ShaderSetup& setup, unsigned index,
const Common::Vec4<u8>& values) {
ASSERT(index < setup.uniforms.i.size());
setup.uniforms.i[index] = values;
LOG_TRACE(HW_GPU, "Set {} integer uniform {} to {:02x} {:02x} {:02x} {:02x}",
GetShaderSetupTypeName(setup), index, values.x, values.y, values.z, values.w);
}
static void WriteUniformFloatReg(ShaderRegs& config, Shader::ShaderSetup& setup,
int& float_regs_counter, std::array<u32, 4>& uniform_write_buffer,
u32 value) {
auto& uniform_setup = config.uniform_setup;
// TODO: Does actual hardware indeed keep an intermediate buffer or does
// it directly write the values?
uniform_write_buffer[float_regs_counter++] = value;
// Uniforms are written in a packed format such that four float24 values are encoded in
// three 32-bit numbers. We write to internal memory once a full such vector is
// written.
if ((float_regs_counter >= 4 && uniform_setup.IsFloat32()) ||
(float_regs_counter >= 3 && !uniform_setup.IsFloat32())) {
float_regs_counter = 0;
if (uniform_setup.index >= setup.uniforms.f.size()) {
LOG_ERROR(HW_GPU, "Invalid {} float uniform index {}", GetShaderSetupTypeName(setup),
(int)uniform_setup.index);
} else {
auto& uniform = setup.uniforms.f[uniform_setup.index];
// NOTE: The destination component order indeed is "backwards"
if (uniform_setup.IsFloat32()) {
for (auto i : {0, 1, 2, 3}) {
float buffer_value;
std::memcpy(&buffer_value, &uniform_write_buffer[i], sizeof(float));
uniform[3 - i] = f24::FromFloat32(buffer_value);
}
} else {
// TODO: Untested
uniform.w = f24::FromRaw(uniform_write_buffer[0] >> 8);
uniform.z = f24::FromRaw(((uniform_write_buffer[0] & 0xFF) << 16) |
((uniform_write_buffer[1] >> 16) & 0xFFFF));
uniform.y = f24::FromRaw(((uniform_write_buffer[1] & 0xFFFF) << 8) |
((uniform_write_buffer[2] >> 24) & 0xFF));
uniform.x = f24::FromRaw(uniform_write_buffer[2] & 0xFFFFFF);
}
LOG_TRACE(HW_GPU, "Set {} float uniform {:x} to ({} {} {} {})",
GetShaderSetupTypeName(setup), (int)uniform_setup.index,
uniform.x.ToFloat32(), uniform.y.ToFloat32(), uniform.z.ToFloat32(),
uniform.w.ToFloat32());
// TODO: Verify that this actually modifies the register!
uniform_setup.index.Assign(uniform_setup.index + 1);
}
}
}
static void WritePicaReg(u32 id, u32 value, u32 mask) {
auto& regs = g_state.regs;
if (id >= Regs::NUM_REGS) {
LOG_ERROR(
HW_GPU,
"Commandlist tried to write to invalid register 0x{:03X} (value: {:08X}, mask: {:X})",
id, value, mask);
return;
}
// TODO: Figure out how register masking acts on e.g. vs.uniform_setup.set_value
u32 old_value = regs.reg_array[id];
const u32 write_mask = expand_bits_to_bytes[mask];
regs.reg_array[id] = (old_value & ~write_mask) | (value & write_mask);
// Double check for is_pica_tracing to avoid call overhead
if (DebugUtils::IsPicaTracing()) {
DebugUtils::OnPicaRegWrite({(u16)id, (u16)mask, regs.reg_array[id]});
}
if (g_debug_context)
g_debug_context->OnEvent(DebugContext::Event::PicaCommandLoaded,
reinterpret_cast<void*>(&id));
switch (id) {
// Trigger IRQ
case PICA_REG_INDEX(trigger_irq):
Service::GSP::SignalInterrupt(Service::GSP::InterruptId::P3D);
break;
case PICA_REG_INDEX(pipeline.triangle_topology):
g_state.primitive_assembler.Reconfigure(regs.pipeline.triangle_topology);
break;
case PICA_REG_INDEX(pipeline.restart_primitive):
g_state.primitive_assembler.Reset();
break;
case PICA_REG_INDEX(pipeline.vs_default_attributes_setup.index):
g_state.immediate.current_attribute = 0;
g_state.immediate.reset_geometry_pipeline = true;
g_state.default_attr_counter = 0;
break;
// Load default vertex input attributes
case PICA_REG_INDEX(pipeline.vs_default_attributes_setup.set_value[0]):
case PICA_REG_INDEX(pipeline.vs_default_attributes_setup.set_value[1]):
case PICA_REG_INDEX(pipeline.vs_default_attributes_setup.set_value[2]): {
// TODO: Does actual hardware indeed keep an intermediate buffer or does
// it directly write the values?
g_state.default_attr_write_buffer[g_state.default_attr_counter++] = value;
// Default attributes are written in a packed format such that four float24 values are
// encoded in
// three 32-bit numbers. We write to internal memory once a full such vector is
// written.
if (g_state.default_attr_counter >= 3) {
g_state.default_attr_counter = 0;
auto& setup = regs.pipeline.vs_default_attributes_setup;
if (setup.index >= 16) {
LOG_ERROR(HW_GPU, "Invalid VS default attribute index {}", (int)setup.index);
break;
}
Common::Vec4<f24> attribute;
// NOTE: The destination component order indeed is "backwards"
attribute.w = f24::FromRaw(g_state.default_attr_write_buffer[0] >> 8);
attribute.z = f24::FromRaw(((g_state.default_attr_write_buffer[0] & 0xFF) << 16) |
((g_state.default_attr_write_buffer[1] >> 16) & 0xFFFF));
attribute.y = f24::FromRaw(((g_state.default_attr_write_buffer[1] & 0xFFFF) << 8) |
((g_state.default_attr_write_buffer[2] >> 24) & 0xFF));
attribute.x = f24::FromRaw(g_state.default_attr_write_buffer[2] & 0xFFFFFF);
LOG_TRACE(HW_GPU, "Set default VS attribute {:x} to ({} {} {} {})", (int)setup.index,
attribute.x.ToFloat32(), attribute.y.ToFloat32(), attribute.z.ToFloat32(),
attribute.w.ToFloat32());
// TODO: Verify that this actually modifies the register!
if (setup.index < 15) {
g_state.input_default_attributes.attr[setup.index] = attribute;
setup.index++;
} else {
// Put each attribute into an immediate input buffer. When all specified immediate
// attributes are present, the Vertex Shader is invoked and everything is sent to
// the primitive assembler.
auto& immediate_input = g_state.immediate.input_vertex;
auto& immediate_attribute_id = g_state.immediate.current_attribute;
immediate_input.attr[immediate_attribute_id] = attribute;
if (immediate_attribute_id < regs.pipeline.max_input_attrib_index) {
immediate_attribute_id += 1;
} else {
MICROPROFILE_SCOPE(GPU_Drawing);
immediate_attribute_id = 0;
Shader::OutputVertex::ValidateSemantics(regs.rasterizer);
auto* shader_engine = Shader::GetEngine();
shader_engine->SetupBatch(g_state.vs, regs.vs.main_offset);
// Send to vertex shader
if (g_debug_context)
g_debug_context->OnEvent(DebugContext::Event::VertexShaderInvocation,
static_cast<void*>(&immediate_input));
Shader::UnitState shader_unit;
Shader::AttributeBuffer output{};
shader_unit.LoadInput(regs.vs, immediate_input);
shader_engine->Run(g_state.vs, shader_unit);
shader_unit.WriteOutput(regs.vs, output);
// Send to geometry pipeline
if (g_state.immediate.reset_geometry_pipeline) {
g_state.geometry_pipeline.Reconfigure();
g_state.immediate.reset_geometry_pipeline = false;
}
ASSERT(!g_state.geometry_pipeline.NeedIndexInput());
g_state.geometry_pipeline.Setup(shader_engine);
g_state.geometry_pipeline.SubmitVertex(output);
// TODO: If drawing after every immediate mode triangle kills performance,
// change it to flush triangles whenever a drawing config register changes
// See: https://github.com/citra-emu/citra/pull/2866#issuecomment-327011550
VideoCore::g_renderer->Rasterizer()->DrawTriangles();
if (g_debug_context) {
g_debug_context->OnEvent(DebugContext::Event::FinishedPrimitiveBatch,
nullptr);
}
}
}
}
break;
}
case PICA_REG_INDEX(pipeline.gpu_mode):
// This register likely just enables vertex processing and doesn't need any special handling
break;
case PICA_REG_INDEX(pipeline.command_buffer.trigger[0]):
case PICA_REG_INDEX(pipeline.command_buffer.trigger[1]): {
unsigned index =
static_cast<unsigned>(id - PICA_REG_INDEX(pipeline.command_buffer.trigger[0]));
u32* head_ptr = (u32*)VideoCore::g_memory->GetPhysicalPointer(
regs.pipeline.command_buffer.GetPhysicalAddress(index));
g_state.cmd_list.head_ptr = g_state.cmd_list.current_ptr = head_ptr;
g_state.cmd_list.length = regs.pipeline.command_buffer.GetSize(index) / sizeof(u32);
break;
}
// It seems like these trigger vertex rendering
case PICA_REG_INDEX(pipeline.trigger_draw):
case PICA_REG_INDEX(pipeline.trigger_draw_indexed): {
MICROPROFILE_SCOPE(GPU_Drawing);
#if PICA_LOG_TEV
DebugUtils::DumpTevStageConfig(regs.GetTevStages());
#endif
if (g_debug_context)
g_debug_context->OnEvent(DebugContext::Event::IncomingPrimitiveBatch, nullptr);
PrimitiveAssembler<Shader::OutputVertex>& primitive_assembler = g_state.primitive_assembler;
bool accelerate_draw = VideoCore::g_hw_shader_enabled && primitive_assembler.IsEmpty();
if (regs.pipeline.use_gs == PipelineRegs::UseGS::No) {
auto topology = primitive_assembler.GetTopology();
if (topology == PipelineRegs::TriangleTopology::Shader ||
topology == PipelineRegs::TriangleTopology::List) {
accelerate_draw = accelerate_draw && (regs.pipeline.num_vertices % 3) == 0;
}
// TODO (wwylele): for Strip/Fan topology, if the primitive assember is not restarted
// after this draw call, the buffered vertex from this draw should "leak" to the next
// draw, in which case we should buffer the vertex into the software primitive assember,
// or disable accelerate draw completely. However, there is not game found yet that does
// this, so this is left unimplemented for now. Revisit this when an issue is found in
// games.
} else {
accelerate_draw = false;
}
bool is_indexed = (id == PICA_REG_INDEX(pipeline.trigger_draw_indexed));
if (accelerate_draw &&
VideoCore::g_renderer->Rasterizer()->AccelerateDrawBatch(is_indexed)) {
if (g_debug_context) {
g_debug_context->OnEvent(DebugContext::Event::FinishedPrimitiveBatch, nullptr);
}
break;
}
// Processes information about internal vertex attributes to figure out how a vertex is
// loaded.
// Later, these can be compiled and cached.
const u32 base_address = regs.pipeline.vertex_attributes.GetPhysicalBaseAddress();
VertexLoader loader(regs.pipeline);
Shader::OutputVertex::ValidateSemantics(regs.rasterizer);
// Load vertices
const auto& index_info = regs.pipeline.index_array;
const u8* index_address_8 =
VideoCore::g_memory->GetPhysicalPointer(base_address + index_info.offset);
const u16* index_address_16 = reinterpret_cast<const u16*>(index_address_8);
bool index_u16 = index_info.format != 0;
if (g_debug_context && g_debug_context->recorder) {
for (int i = 0; i < 3; ++i) {
const auto texture = regs.texturing.GetTextures()[i];
if (!texture.enabled)
continue;
u8* texture_data =
VideoCore::g_memory->GetPhysicalPointer(texture.config.GetPhysicalAddress());
g_debug_context->recorder->MemoryAccessed(
texture_data,
Pica::TexturingRegs::NibblesPerPixel(texture.format) * texture.config.width /
2 * texture.config.height,
texture.config.GetPhysicalAddress());
}
}
DebugUtils::MemoryAccessTracker memory_accesses;
// Simple circular-replacement vertex cache
// The size has been tuned for optimal balance between hit-rate and the cost of lookup
const std::size_t VERTEX_CACHE_SIZE = 32;
std::array<bool, VERTEX_CACHE_SIZE> vertex_cache_valid{};
std::array<u16, VERTEX_CACHE_SIZE> vertex_cache_ids;
std::array<Shader::AttributeBuffer, VERTEX_CACHE_SIZE> vertex_cache;
Shader::AttributeBuffer vs_output;
unsigned int vertex_cache_pos = 0;
auto* shader_engine = Shader::GetEngine();
Shader::UnitState shader_unit;
shader_engine->SetupBatch(g_state.vs, regs.vs.main_offset);
g_state.geometry_pipeline.Reconfigure();
g_state.geometry_pipeline.Setup(shader_engine);
if (g_state.geometry_pipeline.NeedIndexInput())
ASSERT(is_indexed);
for (unsigned int index = 0; index < regs.pipeline.num_vertices; ++index) {
// Indexed rendering doesn't use the start offset
unsigned int vertex =
is_indexed ? (index_u16 ? index_address_16[index] : index_address_8[index])
: (index + regs.pipeline.vertex_offset);
bool vertex_cache_hit = false;
if (is_indexed) {
if (g_state.geometry_pipeline.NeedIndexInput()) {
g_state.geometry_pipeline.SubmitIndex(vertex);
continue;
}
if (g_debug_context && Pica::g_debug_context->recorder) {
int size = index_u16 ? 2 : 1;
memory_accesses.AddAccess(base_address + index_info.offset + size * index,
size);
}
for (unsigned int i = 0; i < VERTEX_CACHE_SIZE; ++i) {
if (vertex_cache_valid[i] && vertex == vertex_cache_ids[i]) {
vs_output = vertex_cache[i];
vertex_cache_hit = true;
break;
}
}
}
if (!vertex_cache_hit) {
// Initialize data for the current vertex
Shader::AttributeBuffer input;
loader.LoadVertex(base_address, index, vertex, input, memory_accesses);
// Send to vertex shader
if (g_debug_context)
g_debug_context->OnEvent(DebugContext::Event::VertexShaderInvocation,
(void*)&input);
shader_unit.LoadInput(regs.vs, input);
shader_engine->Run(g_state.vs, shader_unit);
shader_unit.WriteOutput(regs.vs, vs_output);
if (is_indexed) {
vertex_cache[vertex_cache_pos] = vs_output;
vertex_cache_valid[vertex_cache_pos] = true;
vertex_cache_ids[vertex_cache_pos] = vertex;
vertex_cache_pos = (vertex_cache_pos + 1) % VERTEX_CACHE_SIZE;
}
}
// Send to geometry pipeline
g_state.geometry_pipeline.SubmitVertex(vs_output);
}
for (auto& range : memory_accesses.ranges) {
g_debug_context->recorder->MemoryAccessed(
VideoCore::g_memory->GetPhysicalPointer(range.first), range.second, range.first);
}
VideoCore::g_renderer->Rasterizer()->DrawTriangles();
if (g_debug_context) {
g_debug_context->OnEvent(DebugContext::Event::FinishedPrimitiveBatch, nullptr);
}
break;
}
case PICA_REG_INDEX(gs.bool_uniforms):
WriteUniformBoolReg(g_state.gs, g_state.regs.gs.bool_uniforms.Value());
break;
case PICA_REG_INDEX(gs.int_uniforms[0]):
case PICA_REG_INDEX(gs.int_uniforms[1]):
case PICA_REG_INDEX(gs.int_uniforms[2]):
case PICA_REG_INDEX(gs.int_uniforms[3]): {
unsigned index = (id - PICA_REG_INDEX(gs.int_uniforms[0]));
auto values = regs.gs.int_uniforms[index];
WriteUniformIntReg(g_state.gs, index,
Common::Vec4<u8>(values.x, values.y, values.z, values.w));
break;
}
case PICA_REG_INDEX(gs.uniform_setup.set_value[0]):
case PICA_REG_INDEX(gs.uniform_setup.set_value[1]):
case PICA_REG_INDEX(gs.uniform_setup.set_value[2]):
case PICA_REG_INDEX(gs.uniform_setup.set_value[3]):
case PICA_REG_INDEX(gs.uniform_setup.set_value[4]):
case PICA_REG_INDEX(gs.uniform_setup.set_value[5]):
case PICA_REG_INDEX(gs.uniform_setup.set_value[6]):
case PICA_REG_INDEX(gs.uniform_setup.set_value[7]): {
WriteUniformFloatReg(g_state.regs.gs, g_state.gs, g_state.gs_float_regs_counter,
g_state.gs_uniform_write_buffer, value);
break;
}
case PICA_REG_INDEX(gs.program.set_word[0]):
case PICA_REG_INDEX(gs.program.set_word[1]):
case PICA_REG_INDEX(gs.program.set_word[2]):
case PICA_REG_INDEX(gs.program.set_word[3]):
case PICA_REG_INDEX(gs.program.set_word[4]):
case PICA_REG_INDEX(gs.program.set_word[5]):
case PICA_REG_INDEX(gs.program.set_word[6]):
case PICA_REG_INDEX(gs.program.set_word[7]): {
u32& offset = g_state.regs.gs.program.offset;
if (offset >= 4096) {
LOG_ERROR(HW_GPU, "Invalid GS program offset {}", offset);
} else {
g_state.gs.program_code[offset] = value;
g_state.gs.MarkProgramCodeDirty();
offset++;
}
break;
}
case PICA_REG_INDEX(gs.swizzle_patterns.set_word[0]):
case PICA_REG_INDEX(gs.swizzle_patterns.set_word[1]):
case PICA_REG_INDEX(gs.swizzle_patterns.set_word[2]):
case PICA_REG_INDEX(gs.swizzle_patterns.set_word[3]):
case PICA_REG_INDEX(gs.swizzle_patterns.set_word[4]):
case PICA_REG_INDEX(gs.swizzle_patterns.set_word[5]):
case PICA_REG_INDEX(gs.swizzle_patterns.set_word[6]):
case PICA_REG_INDEX(gs.swizzle_patterns.set_word[7]): {
u32& offset = g_state.regs.gs.swizzle_patterns.offset;
if (offset >= g_state.gs.swizzle_data.size()) {
LOG_ERROR(HW_GPU, "Invalid GS swizzle pattern offset {}", offset);
} else {
g_state.gs.swizzle_data[offset] = value;
g_state.gs.MarkSwizzleDataDirty();
offset++;
}
break;
}
case PICA_REG_INDEX(vs.bool_uniforms):
// TODO (wwylele): does regs.pipeline.gs_unit_exclusive_configuration affect this?
WriteUniformBoolReg(g_state.vs, g_state.regs.vs.bool_uniforms.Value());
break;
case PICA_REG_INDEX(vs.int_uniforms[0]):
case PICA_REG_INDEX(vs.int_uniforms[1]):
case PICA_REG_INDEX(vs.int_uniforms[2]):
case PICA_REG_INDEX(vs.int_uniforms[3]): {
// TODO (wwylele): does regs.pipeline.gs_unit_exclusive_configuration affect this?
unsigned index = (id - PICA_REG_INDEX(vs.int_uniforms[0]));
auto values = regs.vs.int_uniforms[index];
WriteUniformIntReg(g_state.vs, index,
Common::Vec4<u8>(values.x, values.y, values.z, values.w));
break;
}
case PICA_REG_INDEX(vs.uniform_setup.set_value[0]):
case PICA_REG_INDEX(vs.uniform_setup.set_value[1]):
case PICA_REG_INDEX(vs.uniform_setup.set_value[2]):
case PICA_REG_INDEX(vs.uniform_setup.set_value[3]):
case PICA_REG_INDEX(vs.uniform_setup.set_value[4]):
case PICA_REG_INDEX(vs.uniform_setup.set_value[5]):
case PICA_REG_INDEX(vs.uniform_setup.set_value[6]):
case PICA_REG_INDEX(vs.uniform_setup.set_value[7]): {
// TODO (wwylele): does regs.pipeline.gs_unit_exclusive_configuration affect this?
WriteUniformFloatReg(g_state.regs.vs, g_state.vs, g_state.vs_float_regs_counter,
g_state.vs_uniform_write_buffer, value);
break;
}
case PICA_REG_INDEX(vs.program.set_word[0]):
case PICA_REG_INDEX(vs.program.set_word[1]):
case PICA_REG_INDEX(vs.program.set_word[2]):
case PICA_REG_INDEX(vs.program.set_word[3]):
case PICA_REG_INDEX(vs.program.set_word[4]):
case PICA_REG_INDEX(vs.program.set_word[5]):
case PICA_REG_INDEX(vs.program.set_word[6]):
case PICA_REG_INDEX(vs.program.set_word[7]): {
u32& offset = g_state.regs.vs.program.offset;
if (offset >= 512) {
LOG_ERROR(HW_GPU, "Invalid VS program offset {}", offset);
} else {
g_state.vs.program_code[offset] = value;
g_state.vs.MarkProgramCodeDirty();
if (!g_state.regs.pipeline.gs_unit_exclusive_configuration) {
g_state.gs.program_code[offset] = value;
g_state.gs.MarkProgramCodeDirty();
}
offset++;
}
break;
}
case PICA_REG_INDEX(vs.swizzle_patterns.set_word[0]):
case PICA_REG_INDEX(vs.swizzle_patterns.set_word[1]):
case PICA_REG_INDEX(vs.swizzle_patterns.set_word[2]):
case PICA_REG_INDEX(vs.swizzle_patterns.set_word[3]):
case PICA_REG_INDEX(vs.swizzle_patterns.set_word[4]):
case PICA_REG_INDEX(vs.swizzle_patterns.set_word[5]):
case PICA_REG_INDEX(vs.swizzle_patterns.set_word[6]):
case PICA_REG_INDEX(vs.swizzle_patterns.set_word[7]): {
u32& offset = g_state.regs.vs.swizzle_patterns.offset;
if (offset >= g_state.vs.swizzle_data.size()) {
LOG_ERROR(HW_GPU, "Invalid VS swizzle pattern offset {}", offset);
} else {
g_state.vs.swizzle_data[offset] = value;
g_state.vs.MarkSwizzleDataDirty();
if (!g_state.regs.pipeline.gs_unit_exclusive_configuration) {
g_state.gs.swizzle_data[offset] = value;
g_state.gs.MarkSwizzleDataDirty();
}
offset++;
}
break;
}
case PICA_REG_INDEX(lighting.lut_data[0]):
case PICA_REG_INDEX(lighting.lut_data[1]):
case PICA_REG_INDEX(lighting.lut_data[2]):
case PICA_REG_INDEX(lighting.lut_data[3]):
case PICA_REG_INDEX(lighting.lut_data[4]):
case PICA_REG_INDEX(lighting.lut_data[5]):
case PICA_REG_INDEX(lighting.lut_data[6]):
case PICA_REG_INDEX(lighting.lut_data[7]): {
auto& lut_config = regs.lighting.lut_config;
ASSERT_MSG(lut_config.index < 256, "lut_config.index exceeded maximum value of 255!");
g_state.lighting.luts[lut_config.type][lut_config.index].raw = value;
lut_config.index.Assign(lut_config.index + 1);
break;
}
case PICA_REG_INDEX(texturing.fog_lut_data[0]):
case PICA_REG_INDEX(texturing.fog_lut_data[1]):
case PICA_REG_INDEX(texturing.fog_lut_data[2]):
case PICA_REG_INDEX(texturing.fog_lut_data[3]):
case PICA_REG_INDEX(texturing.fog_lut_data[4]):
case PICA_REG_INDEX(texturing.fog_lut_data[5]):
case PICA_REG_INDEX(texturing.fog_lut_data[6]):
case PICA_REG_INDEX(texturing.fog_lut_data[7]): {
g_state.fog.lut[regs.texturing.fog_lut_offset % 128].raw = value;
regs.texturing.fog_lut_offset.Assign(regs.texturing.fog_lut_offset + 1);
break;
}
case PICA_REG_INDEX(texturing.proctex_lut_data[0]):
case PICA_REG_INDEX(texturing.proctex_lut_data[1]):
case PICA_REG_INDEX(texturing.proctex_lut_data[2]):
case PICA_REG_INDEX(texturing.proctex_lut_data[3]):
case PICA_REG_INDEX(texturing.proctex_lut_data[4]):
case PICA_REG_INDEX(texturing.proctex_lut_data[5]):
case PICA_REG_INDEX(texturing.proctex_lut_data[6]):
case PICA_REG_INDEX(texturing.proctex_lut_data[7]): {
auto& index = regs.texturing.proctex_lut_config.index;
auto& pt = g_state.proctex;
switch (regs.texturing.proctex_lut_config.ref_table.Value()) {
case TexturingRegs::ProcTexLutTable::Noise:
pt.noise_table[index % pt.noise_table.size()].raw = value;
break;
case TexturingRegs::ProcTexLutTable::ColorMap:
pt.color_map_table[index % pt.color_map_table.size()].raw = value;
break;
case TexturingRegs::ProcTexLutTable::AlphaMap:
pt.alpha_map_table[index % pt.alpha_map_table.size()].raw = value;
break;
case TexturingRegs::ProcTexLutTable::Color:
pt.color_table[index % pt.color_table.size()].raw = value;
break;
case TexturingRegs::ProcTexLutTable::ColorDiff:
pt.color_diff_table[index % pt.color_diff_table.size()].raw = value;
break;
}
index.Assign(index + 1);
break;
}
default:
break;
}
VideoCore::g_renderer->Rasterizer()->NotifyPicaRegisterChanged(id);
if (g_debug_context)
g_debug_context->OnEvent(DebugContext::Event::PicaCommandProcessed,
reinterpret_cast<void*>(&id));
}
void ProcessCommandList(PAddr list, u32 size) {
u32* buffer = (u32*)VideoCore::g_memory->GetPhysicalPointer(list);
if (Pica::g_debug_context && Pica::g_debug_context->recorder) {
Pica::g_debug_context->recorder->MemoryAccessed((u8*)buffer, size, list);
}
g_state.cmd_list.addr = list;
g_state.cmd_list.head_ptr = g_state.cmd_list.current_ptr = buffer;
g_state.cmd_list.length = size / sizeof(u32);
while (g_state.cmd_list.current_ptr < g_state.cmd_list.head_ptr + g_state.cmd_list.length) {
// Align read pointer to 8 bytes
if ((g_state.cmd_list.head_ptr - g_state.cmd_list.current_ptr) % 2 != 0)
++g_state.cmd_list.current_ptr;
u32 value = *g_state.cmd_list.current_ptr++;
const CommandHeader header = {*g_state.cmd_list.current_ptr++};
WritePicaReg(header.cmd_id, value, header.parameter_mask);
for (unsigned i = 0; i < header.extra_data_length; ++i) {
u32 cmd = header.cmd_id + (header.group_commands ? i + 1 : 0);
WritePicaReg(cmd, *g_state.cmd_list.current_ptr++, header.parameter_mask);
}
}
}
} // namespace Pica::CommandProcessor