citra/src/video_core/shader/shader_jit_x64.cpp

889 lines
31 KiB
C++

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <nihstro/shader_bytecode.h>
#include <xmmintrin.h>
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/vector_math.h"
#include "common/x64/abi.h"
#include "common/x64/cpu_detect.h"
#include "common/x64/emitter.h"
#include "shader.h"
#include "shader_jit_x64.h"
#include "video_core/pica_state.h"
#include "video_core/pica_types.h"
namespace Pica {
namespace Shader {
using namespace Gen;
typedef void (JitShader::*JitFunction)(Instruction instr);
const JitFunction instr_table[64] = {
&JitShader::Compile_ADD, // add
&JitShader::Compile_DP3, // dp3
&JitShader::Compile_DP4, // dp4
&JitShader::Compile_DPH, // dph
nullptr, // unknown
&JitShader::Compile_EX2, // ex2
&JitShader::Compile_LG2, // lg2
nullptr, // unknown
&JitShader::Compile_MUL, // mul
&JitShader::Compile_SGE, // sge
&JitShader::Compile_SLT, // slt
&JitShader::Compile_FLR, // flr
&JitShader::Compile_MAX, // max
&JitShader::Compile_MIN, // min
&JitShader::Compile_RCP, // rcp
&JitShader::Compile_RSQ, // rsq
nullptr, // unknown
nullptr, // unknown
&JitShader::Compile_MOVA, // mova
&JitShader::Compile_MOV, // mov
nullptr, // unknown
nullptr, // unknown
nullptr, // unknown
nullptr, // unknown
&JitShader::Compile_DPH, // dphi
nullptr, // unknown
&JitShader::Compile_SGE, // sgei
&JitShader::Compile_SLT, // slti
nullptr, // unknown
nullptr, // unknown
nullptr, // unknown
nullptr, // unknown
nullptr, // unknown
&JitShader::Compile_NOP, // nop
&JitShader::Compile_END, // end
nullptr, // break
&JitShader::Compile_CALL, // call
&JitShader::Compile_CALLC, // callc
&JitShader::Compile_CALLU, // callu
&JitShader::Compile_IF, // ifu
&JitShader::Compile_IF, // ifc
&JitShader::Compile_LOOP, // loop
nullptr, // emit
nullptr, // sete
&JitShader::Compile_JMP, // jmpc
&JitShader::Compile_JMP, // jmpu
&JitShader::Compile_CMP, // cmp
&JitShader::Compile_CMP, // cmp
&JitShader::Compile_MAD, // madi
&JitShader::Compile_MAD, // madi
&JitShader::Compile_MAD, // madi
&JitShader::Compile_MAD, // madi
&JitShader::Compile_MAD, // madi
&JitShader::Compile_MAD, // madi
&JitShader::Compile_MAD, // madi
&JitShader::Compile_MAD, // madi
&JitShader::Compile_MAD, // mad
&JitShader::Compile_MAD, // mad
&JitShader::Compile_MAD, // mad
&JitShader::Compile_MAD, // mad
&JitShader::Compile_MAD, // mad
&JitShader::Compile_MAD, // mad
&JitShader::Compile_MAD, // mad
&JitShader::Compile_MAD, // mad
};
// The following is used to alias some commonly used registers. Generally, RAX-RDX and XMM0-XMM3 can
// be used as scratch registers within a compiler function. The other registers have designated
// purposes, as documented below:
/// Pointer to the uniform memory
static const X64Reg SETUP = R9;
/// The two 32-bit VS address offset registers set by the MOVA instruction
static const X64Reg ADDROFFS_REG_0 = R10;
static const X64Reg ADDROFFS_REG_1 = R11;
/// VS loop count register (Multiplied by 16)
static const X64Reg LOOPCOUNT_REG = R12;
/// Current VS loop iteration number (we could probably use LOOPCOUNT_REG, but this quicker)
static const X64Reg LOOPCOUNT = RSI;
/// Number to increment LOOPCOUNT_REG by on each loop iteration (Multiplied by 16)
static const X64Reg LOOPINC = RDI;
/// Result of the previous CMP instruction for the X-component comparison
static const X64Reg COND0 = R13;
/// Result of the previous CMP instruction for the Y-component comparison
static const X64Reg COND1 = R14;
/// Pointer to the UnitState instance for the current VS unit
static const X64Reg STATE = R15;
/// SIMD scratch register
static const X64Reg SCRATCH = XMM0;
/// Loaded with the first swizzled source register, otherwise can be used as a scratch register
static const X64Reg SRC1 = XMM1;
/// Loaded with the second swizzled source register, otherwise can be used as a scratch register
static const X64Reg SRC2 = XMM2;
/// Loaded with the third swizzled source register, otherwise can be used as a scratch register
static const X64Reg SRC3 = XMM3;
/// Additional scratch register
static const X64Reg SCRATCH2 = XMM4;
/// Constant vector of [1.0f, 1.0f, 1.0f, 1.0f], used to efficiently set a vector to one
static const X64Reg ONE = XMM14;
/// Constant vector of [-0.f, -0.f, -0.f, -0.f], used to efficiently negate a vector with XOR
static const X64Reg NEGBIT = XMM15;
// State registers that must not be modified by external functions calls
// Scratch registers, e.g., SRC1 and SCRATCH, have to be saved on the side if needed
static const BitSet32 persistent_regs = {
SETUP, STATE, // Pointers to register blocks
ADDROFFS_REG_0, ADDROFFS_REG_1, LOOPCOUNT_REG, COND0, COND1, // Cached registers
ONE + 16, NEGBIT + 16, // Constants
};
/// Raw constant for the source register selector that indicates no swizzling is performed
static const u8 NO_SRC_REG_SWIZZLE = 0x1b;
/// Raw constant for the destination register enable mask that indicates all components are enabled
static const u8 NO_DEST_REG_MASK = 0xf;
/**
* Get the vertex shader instruction for a given offset in the current shader program
* @param offset Offset in the current shader program of the instruction
* @return Instruction at the specified offset
*/
static Instruction GetVertexShaderInstruction(size_t offset) {
return {g_state.vs.program_code[offset]};
}
static void LogCritical(const char* msg) {
LOG_CRITICAL(HW_GPU, "%s", msg);
}
void JitShader::Compile_Assert(bool condition, const char* msg) {
if (!condition) {
ABI_CallFunctionP(reinterpret_cast<const void*>(LogCritical), const_cast<char*>(msg));
}
}
/**
* Loads and swizzles a source register into the specified XMM register.
* @param instr VS instruction, used for determining how to load the source register
* @param src_num Number indicating which source register to load (1 = src1, 2 = src2, 3 = src3)
* @param src_reg SourceRegister object corresponding to the source register to load
* @param dest Destination XMM register to store the loaded, swizzled source register
*/
void JitShader::Compile_SwizzleSrc(Instruction instr, unsigned src_num, SourceRegister src_reg,
X64Reg dest) {
X64Reg src_ptr;
size_t src_offset;
if (src_reg.GetRegisterType() == RegisterType::FloatUniform) {
src_ptr = SETUP;
src_offset = ShaderSetup::UniformOffset(RegisterType::FloatUniform, src_reg.GetIndex());
} else {
src_ptr = STATE;
src_offset = UnitState<false>::InputOffset(src_reg);
}
int src_offset_disp = (int)src_offset;
ASSERT_MSG(src_offset == src_offset_disp, "Source register offset too large for int type");
unsigned operand_desc_id;
const bool is_inverted =
(0 != (instr.opcode.Value().GetInfo().subtype & OpCode::Info::SrcInversed));
unsigned address_register_index;
unsigned offset_src;
if (instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MAD ||
instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MADI) {
operand_desc_id = instr.mad.operand_desc_id;
offset_src = is_inverted ? 3 : 2;
address_register_index = instr.mad.address_register_index;
} else {
operand_desc_id = instr.common.operand_desc_id;
offset_src = is_inverted ? 2 : 1;
address_register_index = instr.common.address_register_index;
}
if (src_num == offset_src && address_register_index != 0) {
switch (address_register_index) {
case 1: // address offset 1
MOVAPS(dest, MComplex(src_ptr, ADDROFFS_REG_0, SCALE_1, src_offset_disp));
break;
case 2: // address offset 2
MOVAPS(dest, MComplex(src_ptr, ADDROFFS_REG_1, SCALE_1, src_offset_disp));
break;
case 3: // address offset 3
MOVAPS(dest, MComplex(src_ptr, LOOPCOUNT_REG, SCALE_1, src_offset_disp));
break;
default:
UNREACHABLE();
break;
}
} else {
// Load the source
MOVAPS(dest, MDisp(src_ptr, src_offset_disp));
}
SwizzlePattern swiz = {g_state.vs.swizzle_data[operand_desc_id]};
// Generate instructions for source register swizzling as needed
u8 sel = swiz.GetRawSelector(src_num);
if (sel != NO_SRC_REG_SWIZZLE) {
// Selector component order needs to be reversed for the SHUFPS instruction
sel = ((sel & 0xc0) >> 6) | ((sel & 3) << 6) | ((sel & 0xc) << 2) | ((sel & 0x30) >> 2);
// Shuffle inputs for swizzle
SHUFPS(dest, R(dest), sel);
}
// If the source register should be negated, flip the negative bit using XOR
const bool negate[] = {swiz.negate_src1, swiz.negate_src2, swiz.negate_src3};
if (negate[src_num - 1]) {
XORPS(dest, R(NEGBIT));
}
}
void JitShader::Compile_DestEnable(Instruction instr, X64Reg src) {
DestRegister dest;
unsigned operand_desc_id;
if (instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MAD ||
instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MADI) {
operand_desc_id = instr.mad.operand_desc_id;
dest = instr.mad.dest.Value();
} else {
operand_desc_id = instr.common.operand_desc_id;
dest = instr.common.dest.Value();
}
SwizzlePattern swiz = {g_state.vs.swizzle_data[operand_desc_id]};
int dest_offset_disp = (int)UnitState<false>::OutputOffset(dest);
ASSERT_MSG(dest_offset_disp == UnitState<false>::OutputOffset(dest),
"Destinaton offset too large for int type");
// If all components are enabled, write the result to the destination register
if (swiz.dest_mask == NO_DEST_REG_MASK) {
// Store dest back to memory
MOVAPS(MDisp(STATE, dest_offset_disp), src);
} else {
// Not all components are enabled, so mask the result when storing to the destination
// register...
MOVAPS(SCRATCH, MDisp(STATE, dest_offset_disp));
if (Common::GetCPUCaps().sse4_1) {
u8 mask = ((swiz.dest_mask & 1) << 3) | ((swiz.dest_mask & 8) >> 3) |
((swiz.dest_mask & 2) << 1) | ((swiz.dest_mask & 4) >> 1);
BLENDPS(SCRATCH, R(src), mask);
} else {
MOVAPS(SCRATCH2, R(src));
UNPCKHPS(SCRATCH2, R(SCRATCH)); // Unpack X/Y components of source and destination
UNPCKLPS(SCRATCH, R(src)); // Unpack Z/W components of source and destination
// Compute selector to selectively copy source components to destination for SHUFPS
// instruction
u8 sel = ((swiz.DestComponentEnabled(0) ? 1 : 0) << 0) |
((swiz.DestComponentEnabled(1) ? 3 : 2) << 2) |
((swiz.DestComponentEnabled(2) ? 0 : 1) << 4) |
((swiz.DestComponentEnabled(3) ? 2 : 3) << 6);
SHUFPS(SCRATCH, R(SCRATCH2), sel);
}
// Store dest back to memory
MOVAPS(MDisp(STATE, dest_offset_disp), SCRATCH);
}
}
void JitShader::Compile_SanitizedMul(Gen::X64Reg src1, Gen::X64Reg src2, Gen::X64Reg scratch) {
MOVAPS(scratch, R(src1));
CMPPS(scratch, R(src2), CMP_ORD);
MULPS(src1, R(src2));
MOVAPS(src2, R(src1));
CMPPS(src2, R(src2), CMP_UNORD);
XORPS(scratch, R(src2));
ANDPS(src1, R(scratch));
}
void JitShader::Compile_EvaluateCondition(Instruction instr) {
// Note: NXOR is used below to check for equality
switch (instr.flow_control.op) {
case Instruction::FlowControlType::Or:
MOV(32, R(RAX), R(COND0));
MOV(32, R(RBX), R(COND1));
XOR(32, R(RAX), Imm32(instr.flow_control.refx.Value() ^ 1));
XOR(32, R(RBX), Imm32(instr.flow_control.refy.Value() ^ 1));
OR(32, R(RAX), R(RBX));
break;
case Instruction::FlowControlType::And:
MOV(32, R(RAX), R(COND0));
MOV(32, R(RBX), R(COND1));
XOR(32, R(RAX), Imm32(instr.flow_control.refx.Value() ^ 1));
XOR(32, R(RBX), Imm32(instr.flow_control.refy.Value() ^ 1));
AND(32, R(RAX), R(RBX));
break;
case Instruction::FlowControlType::JustX:
MOV(32, R(RAX), R(COND0));
XOR(32, R(RAX), Imm32(instr.flow_control.refx.Value() ^ 1));
break;
case Instruction::FlowControlType::JustY:
MOV(32, R(RAX), R(COND1));
XOR(32, R(RAX), Imm32(instr.flow_control.refy.Value() ^ 1));
break;
}
}
void JitShader::Compile_UniformCondition(Instruction instr) {
int offset =
ShaderSetup::UniformOffset(RegisterType::BoolUniform, instr.flow_control.bool_uniform_id);
CMP(sizeof(bool) * 8, MDisp(SETUP, offset), Imm8(0));
}
BitSet32 JitShader::PersistentCallerSavedRegs() {
return persistent_regs & ABI_ALL_CALLER_SAVED;
}
void JitShader::Compile_ADD(Instruction instr) {
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2);
ADDPS(SRC1, R(SRC2));
Compile_DestEnable(instr, SRC1);
}
void JitShader::Compile_DP3(Instruction instr) {
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2);
Compile_SanitizedMul(SRC1, SRC2, SCRATCH);
MOVAPS(SRC2, R(SRC1));
SHUFPS(SRC2, R(SRC2), _MM_SHUFFLE(1, 1, 1, 1));
MOVAPS(SRC3, R(SRC1));
SHUFPS(SRC3, R(SRC3), _MM_SHUFFLE(2, 2, 2, 2));
SHUFPS(SRC1, R(SRC1), _MM_SHUFFLE(0, 0, 0, 0));
ADDPS(SRC1, R(SRC2));
ADDPS(SRC1, R(SRC3));
Compile_DestEnable(instr, SRC1);
}
void JitShader::Compile_DP4(Instruction instr) {
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2);
Compile_SanitizedMul(SRC1, SRC2, SCRATCH);
MOVAPS(SRC2, R(SRC1));
SHUFPS(SRC1, R(SRC1), _MM_SHUFFLE(2, 3, 0, 1)); // XYZW -> ZWXY
ADDPS(SRC1, R(SRC2));
MOVAPS(SRC2, R(SRC1));
SHUFPS(SRC1, R(SRC1), _MM_SHUFFLE(0, 1, 2, 3)); // XYZW -> WZYX
ADDPS(SRC1, R(SRC2));
Compile_DestEnable(instr, SRC1);
}
void JitShader::Compile_DPH(Instruction instr) {
if (instr.opcode.Value().EffectiveOpCode() == OpCode::Id::DPHI) {
Compile_SwizzleSrc(instr, 1, instr.common.src1i, SRC1);
Compile_SwizzleSrc(instr, 2, instr.common.src2i, SRC2);
} else {
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2);
}
if (Common::GetCPUCaps().sse4_1) {
// Set 4th component to 1.0
BLENDPS(SRC1, R(ONE), 0x8); // 0b1000
} else {
// Set 4th component to 1.0
MOVAPS(SCRATCH, R(SRC1));
UNPCKHPS(SCRATCH, R(ONE)); // XYZW, 1111 -> Z1__
UNPCKLPD(SRC1, R(SCRATCH)); // XYZW, Z1__ -> XYZ1
}
Compile_SanitizedMul(SRC1, SRC2, SCRATCH);
MOVAPS(SRC2, R(SRC1));
SHUFPS(SRC1, R(SRC1), _MM_SHUFFLE(2, 3, 0, 1)); // XYZW -> ZWXY
ADDPS(SRC1, R(SRC2));
MOVAPS(SRC2, R(SRC1));
SHUFPS(SRC1, R(SRC1), _MM_SHUFFLE(0, 1, 2, 3)); // XYZW -> WZYX
ADDPS(SRC1, R(SRC2));
Compile_DestEnable(instr, SRC1);
}
void JitShader::Compile_EX2(Instruction instr) {
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
MOVSS(XMM0, R(SRC1));
ABI_PushRegistersAndAdjustStack(PersistentCallerSavedRegs(), 0);
ABI_CallFunction(reinterpret_cast<const void*>(exp2f));
ABI_PopRegistersAndAdjustStack(PersistentCallerSavedRegs(), 0);
SHUFPS(XMM0, R(XMM0), _MM_SHUFFLE(0, 0, 0, 0));
MOVAPS(SRC1, R(XMM0));
Compile_DestEnable(instr, SRC1);
}
void JitShader::Compile_LG2(Instruction instr) {
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
MOVSS(XMM0, R(SRC1));
ABI_PushRegistersAndAdjustStack(PersistentCallerSavedRegs(), 0);
ABI_CallFunction(reinterpret_cast<const void*>(log2f));
ABI_PopRegistersAndAdjustStack(PersistentCallerSavedRegs(), 0);
SHUFPS(XMM0, R(XMM0), _MM_SHUFFLE(0, 0, 0, 0));
MOVAPS(SRC1, R(XMM0));
Compile_DestEnable(instr, SRC1);
}
void JitShader::Compile_MUL(Instruction instr) {
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2);
Compile_SanitizedMul(SRC1, SRC2, SCRATCH);
Compile_DestEnable(instr, SRC1);
}
void JitShader::Compile_SGE(Instruction instr) {
if (instr.opcode.Value().EffectiveOpCode() == OpCode::Id::SGEI) {
Compile_SwizzleSrc(instr, 1, instr.common.src1i, SRC1);
Compile_SwizzleSrc(instr, 2, instr.common.src2i, SRC2);
} else {
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2);
}
CMPPS(SRC2, R(SRC1), CMP_LE);
ANDPS(SRC2, R(ONE));
Compile_DestEnable(instr, SRC2);
}
void JitShader::Compile_SLT(Instruction instr) {
if (instr.opcode.Value().EffectiveOpCode() == OpCode::Id::SLTI) {
Compile_SwizzleSrc(instr, 1, instr.common.src1i, SRC1);
Compile_SwizzleSrc(instr, 2, instr.common.src2i, SRC2);
} else {
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2);
}
CMPPS(SRC1, R(SRC2), CMP_LT);
ANDPS(SRC1, R(ONE));
Compile_DestEnable(instr, SRC1);
}
void JitShader::Compile_FLR(Instruction instr) {
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
if (Common::GetCPUCaps().sse4_1) {
ROUNDFLOORPS(SRC1, R(SRC1));
} else {
CVTPS2DQ(SRC1, R(SRC1));
CVTDQ2PS(SRC1, R(SRC1));
}
Compile_DestEnable(instr, SRC1);
}
void JitShader::Compile_MAX(Instruction instr) {
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2);
// SSE semantics match PICA200 ones: In case of NaN, SRC2 is returned.
MAXPS(SRC1, R(SRC2));
Compile_DestEnable(instr, SRC1);
}
void JitShader::Compile_MIN(Instruction instr) {
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2);
// SSE semantics match PICA200 ones: In case of NaN, SRC2 is returned.
MINPS(SRC1, R(SRC2));
Compile_DestEnable(instr, SRC1);
}
void JitShader::Compile_MOVA(Instruction instr) {
SwizzlePattern swiz = {g_state.vs.swizzle_data[instr.common.operand_desc_id]};
if (!swiz.DestComponentEnabled(0) && !swiz.DestComponentEnabled(1)) {
return; // NoOp
}
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
// Convert floats to integers using truncation (only care about X and Y components)
CVTTPS2DQ(SRC1, R(SRC1));
// Get result
MOVQ_xmm(R(RAX), SRC1);
// Handle destination enable
if (swiz.DestComponentEnabled(0) && swiz.DestComponentEnabled(1)) {
// Move and sign-extend low 32 bits
MOVSX(64, 32, ADDROFFS_REG_0, R(RAX));
// Move and sign-extend high 32 bits
SHR(64, R(RAX), Imm8(32));
MOVSX(64, 32, ADDROFFS_REG_1, R(RAX));
// Multiply by 16 to be used as an offset later
SHL(64, R(ADDROFFS_REG_0), Imm8(4));
SHL(64, R(ADDROFFS_REG_1), Imm8(4));
} else {
if (swiz.DestComponentEnabled(0)) {
// Move and sign-extend low 32 bits
MOVSX(64, 32, ADDROFFS_REG_0, R(RAX));
// Multiply by 16 to be used as an offset later
SHL(64, R(ADDROFFS_REG_0), Imm8(4));
} else if (swiz.DestComponentEnabled(1)) {
// Move and sign-extend high 32 bits
SHR(64, R(RAX), Imm8(32));
MOVSX(64, 32, ADDROFFS_REG_1, R(RAX));
// Multiply by 16 to be used as an offset later
SHL(64, R(ADDROFFS_REG_1), Imm8(4));
}
}
}
void JitShader::Compile_MOV(Instruction instr) {
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
Compile_DestEnable(instr, SRC1);
}
void JitShader::Compile_RCP(Instruction instr) {
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
// TODO(bunnei): RCPSS is a pretty rough approximation, this might cause problems if Pica
// performs this operation more accurately. This should be checked on hardware.
RCPSS(SRC1, R(SRC1));
SHUFPS(SRC1, R(SRC1), _MM_SHUFFLE(0, 0, 0, 0)); // XYWZ -> XXXX
Compile_DestEnable(instr, SRC1);
}
void JitShader::Compile_RSQ(Instruction instr) {
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
// TODO(bunnei): RSQRTSS is a pretty rough approximation, this might cause problems if Pica
// performs this operation more accurately. This should be checked on hardware.
RSQRTSS(SRC1, R(SRC1));
SHUFPS(SRC1, R(SRC1), _MM_SHUFFLE(0, 0, 0, 0)); // XYWZ -> XXXX
Compile_DestEnable(instr, SRC1);
}
void JitShader::Compile_NOP(Instruction instr) {}
void JitShader::Compile_END(Instruction instr) {
ABI_PopRegistersAndAdjustStack(ABI_ALL_CALLEE_SAVED, 8);
RET();
}
void JitShader::Compile_CALL(Instruction instr) {
// Push offset of the return
PUSH(64, Imm32(instr.flow_control.dest_offset + instr.flow_control.num_instructions));
// Call the subroutine
FixupBranch b = CALL();
fixup_branches.push_back({b, instr.flow_control.dest_offset});
// Skip over the return offset that's on the stack
ADD(64, R(RSP), Imm32(8));
}
void JitShader::Compile_CALLC(Instruction instr) {
Compile_EvaluateCondition(instr);
FixupBranch b = J_CC(CC_Z, true);
Compile_CALL(instr);
SetJumpTarget(b);
}
void JitShader::Compile_CALLU(Instruction instr) {
Compile_UniformCondition(instr);
FixupBranch b = J_CC(CC_Z, true);
Compile_CALL(instr);
SetJumpTarget(b);
}
void JitShader::Compile_CMP(Instruction instr) {
using Op = Instruction::Common::CompareOpType::Op;
Op op_x = instr.common.compare_op.x;
Op op_y = instr.common.compare_op.y;
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2);
// SSE doesn't have greater-than (GT) or greater-equal (GE) comparison operators. You need to
// emulate them by swapping the lhs and rhs and using LT and LE. NLT and NLE can't be used here
// because they don't match when used with NaNs.
static const u8 cmp[] = {CMP_EQ, CMP_NEQ, CMP_LT, CMP_LE, CMP_LT, CMP_LE};
bool invert_op_x = (op_x == Op::GreaterThan || op_x == Op::GreaterEqual);
Gen::X64Reg lhs_x = invert_op_x ? SRC2 : SRC1;
Gen::X64Reg rhs_x = invert_op_x ? SRC1 : SRC2;
if (op_x == op_y) {
// Compare X-component and Y-component together
CMPPS(lhs_x, R(rhs_x), cmp[op_x]);
MOVQ_xmm(R(COND0), lhs_x);
MOV(64, R(COND1), R(COND0));
} else {
bool invert_op_y = (op_y == Op::GreaterThan || op_y == Op::GreaterEqual);
Gen::X64Reg lhs_y = invert_op_y ? SRC2 : SRC1;
Gen::X64Reg rhs_y = invert_op_y ? SRC1 : SRC2;
// Compare X-component
MOVAPS(SCRATCH, R(lhs_x));
CMPSS(SCRATCH, R(rhs_x), cmp[op_x]);
// Compare Y-component
CMPPS(lhs_y, R(rhs_y), cmp[op_y]);
MOVQ_xmm(R(COND0), SCRATCH);
MOVQ_xmm(R(COND1), lhs_y);
}
SHR(32, R(COND0), Imm8(31));
SHR(64, R(COND1), Imm8(63));
}
void JitShader::Compile_MAD(Instruction instr) {
Compile_SwizzleSrc(instr, 1, instr.mad.src1, SRC1);
if (instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MADI) {
Compile_SwizzleSrc(instr, 2, instr.mad.src2i, SRC2);
Compile_SwizzleSrc(instr, 3, instr.mad.src3i, SRC3);
} else {
Compile_SwizzleSrc(instr, 2, instr.mad.src2, SRC2);
Compile_SwizzleSrc(instr, 3, instr.mad.src3, SRC3);
}
Compile_SanitizedMul(SRC1, SRC2, SCRATCH);
ADDPS(SRC1, R(SRC3));
Compile_DestEnable(instr, SRC1);
}
void JitShader::Compile_IF(Instruction instr) {
Compile_Assert(instr.flow_control.dest_offset >= program_counter,
"Backwards if-statements not supported");
// Evaluate the "IF" condition
if (instr.opcode.Value() == OpCode::Id::IFU) {
Compile_UniformCondition(instr);
} else if (instr.opcode.Value() == OpCode::Id::IFC) {
Compile_EvaluateCondition(instr);
}
FixupBranch b = J_CC(CC_Z, true);
// Compile the code that corresponds to the condition evaluating as true
Compile_Block(instr.flow_control.dest_offset);
// If there isn't an "ELSE" condition, we are done here
if (instr.flow_control.num_instructions == 0) {
SetJumpTarget(b);
return;
}
FixupBranch b2 = J(true);
SetJumpTarget(b);
// This code corresponds to the "ELSE" condition
// Comple the code that corresponds to the condition evaluating as false
Compile_Block(instr.flow_control.dest_offset + instr.flow_control.num_instructions);
SetJumpTarget(b2);
}
void JitShader::Compile_LOOP(Instruction instr) {
Compile_Assert(instr.flow_control.dest_offset >= program_counter,
"Backwards loops not supported");
Compile_Assert(!looping, "Nested loops not supported");
looping = true;
// This decodes the fields from the integer uniform at index instr.flow_control.int_uniform_id.
// The Y (LOOPCOUNT_REG) and Z (LOOPINC) component are kept multiplied by 16 (Left shifted by
// 4 bits) to be used as an offset into the 16-byte vector registers later
int offset =
ShaderSetup::UniformOffset(RegisterType::IntUniform, instr.flow_control.int_uniform_id);
MOV(32, R(LOOPCOUNT), MDisp(SETUP, offset));
MOV(32, R(LOOPCOUNT_REG), R(LOOPCOUNT));
SHR(32, R(LOOPCOUNT_REG), Imm8(4));
AND(32, R(LOOPCOUNT_REG), Imm32(0xFF0)); // Y-component is the start
MOV(32, R(LOOPINC), R(LOOPCOUNT));
SHR(32, R(LOOPINC), Imm8(12));
AND(32, R(LOOPINC), Imm32(0xFF0)); // Z-component is the incrementer
MOVZX(32, 8, LOOPCOUNT, R(LOOPCOUNT)); // X-component is iteration count
ADD(32, R(LOOPCOUNT), Imm8(1)); // Iteration count is X-component + 1
auto loop_start = GetCodePtr();
Compile_Block(instr.flow_control.dest_offset + 1);
ADD(32, R(LOOPCOUNT_REG), R(LOOPINC)); // Increment LOOPCOUNT_REG by Z-component
SUB(32, R(LOOPCOUNT), Imm8(1)); // Increment loop count by 1
J_CC(CC_NZ, loop_start); // Loop if not equal
looping = false;
}
void JitShader::Compile_JMP(Instruction instr) {
if (instr.opcode.Value() == OpCode::Id::JMPC)
Compile_EvaluateCondition(instr);
else if (instr.opcode.Value() == OpCode::Id::JMPU)
Compile_UniformCondition(instr);
else
UNREACHABLE();
bool inverted_condition =
(instr.opcode.Value() == OpCode::Id::JMPU) && (instr.flow_control.num_instructions & 1);
FixupBranch b = J_CC(inverted_condition ? CC_Z : CC_NZ, true);
fixup_branches.push_back({b, instr.flow_control.dest_offset});
}
void JitShader::Compile_Block(unsigned end) {
while (program_counter < end) {
Compile_NextInstr();
}
}
void JitShader::Compile_Return() {
// Peek return offset on the stack and check if we're at that offset
MOV(64, R(RAX), MDisp(RSP, 8));
CMP(32, R(RAX), Imm32(program_counter));
// If so, jump back to before CALL
FixupBranch b = J_CC(CC_NZ, true);
RET();
SetJumpTarget(b);
}
void JitShader::Compile_NextInstr() {
if (std::binary_search(return_offsets.begin(), return_offsets.end(), program_counter)) {
Compile_Return();
}
ASSERT_MSG(code_ptr[program_counter] == nullptr,
"Tried to compile already compiled shader location!");
code_ptr[program_counter] = GetCodePtr();
Instruction instr = GetVertexShaderInstruction(program_counter++);
OpCode::Id opcode = instr.opcode.Value();
auto instr_func = instr_table[static_cast<unsigned>(opcode)];
if (instr_func) {
// JIT the instruction!
((*this).*instr_func)(instr);
} else {
// Unhandled instruction
LOG_CRITICAL(HW_GPU, "Unhandled instruction: 0x%02x (0x%08x)",
instr.opcode.Value().EffectiveOpCode(), instr.hex);
}
}
void JitShader::FindReturnOffsets() {
return_offsets.clear();
for (size_t offset = 0; offset < g_state.vs.program_code.size(); ++offset) {
Instruction instr = GetVertexShaderInstruction(offset);
switch (instr.opcode.Value()) {
case OpCode::Id::CALL:
case OpCode::Id::CALLC:
case OpCode::Id::CALLU:
return_offsets.push_back(instr.flow_control.dest_offset +
instr.flow_control.num_instructions);
break;
default:
break;
}
}
// Sort for efficient binary search later
std::sort(return_offsets.begin(), return_offsets.end());
}
void JitShader::Compile() {
// Reset flow control state
program = (CompiledShader*)GetCodePtr();
program_counter = 0;
looping = false;
code_ptr.fill(nullptr);
fixup_branches.clear();
// Find all `CALL` instructions and identify return locations
FindReturnOffsets();
// The stack pointer is 8 modulo 16 at the entry of a procedure
ABI_PushRegistersAndAdjustStack(ABI_ALL_CALLEE_SAVED, 8);
MOV(PTRBITS, R(SETUP), R(ABI_PARAM1));
MOV(PTRBITS, R(STATE), R(ABI_PARAM2));
// Zero address/loop registers
XOR(64, R(ADDROFFS_REG_0), R(ADDROFFS_REG_0));
XOR(64, R(ADDROFFS_REG_1), R(ADDROFFS_REG_1));
XOR(64, R(LOOPCOUNT_REG), R(LOOPCOUNT_REG));
// Used to set a register to one
static const __m128 one = {1.f, 1.f, 1.f, 1.f};
MOV(PTRBITS, R(RAX), ImmPtr(&one));
MOVAPS(ONE, MatR(RAX));
// Used to negate registers
static const __m128 neg = {-0.f, -0.f, -0.f, -0.f};
MOV(PTRBITS, R(RAX), ImmPtr(&neg));
MOVAPS(NEGBIT, MatR(RAX));
// Jump to start of the shader program
JMPptr(R(ABI_PARAM3));
// Compile entire program
Compile_Block(static_cast<unsigned>(g_state.vs.program_code.size()));
// Set the target for any incomplete branches now that the entire shader program has been
// emitted
for (const auto& branch : fixup_branches) {
SetJumpTarget(branch.first, code_ptr[branch.second]);
}
// Free memory that's no longer needed
return_offsets.clear();
return_offsets.shrink_to_fit();
fixup_branches.clear();
fixup_branches.shrink_to_fit();
uintptr_t size =
reinterpret_cast<uintptr_t>(GetCodePtr()) - reinterpret_cast<uintptr_t>(program);
ASSERT_MSG(size <= MAX_SHADER_SIZE, "Compiled a shader that exceeds the allocated size!");
LOG_DEBUG(HW_GPU, "Compiled shader size=%lu", size);
}
JitShader::JitShader() {
AllocCodeSpace(MAX_SHADER_SIZE);
}
} // namespace Shader
} // namespace Pica